in

DOM degradation by light and microbes along the Yukon River-coastal ocean continuum

  • 1.

    Holmes, R. M. et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the arctic ocean and surrounding seas. Estuaries Coasts 35(2), 369–382 (2011).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Peterson, B.J., Holmes, R.M., McClelland, J.W., Vörösmarty, C.J., Lammers, R.B., Shiklomanov, A. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171-2173 (2002).

  • 3.

    McClelland, J.W., Déry, S.J., Peterson, B.J., Holmes, R.M., Wood, E.F. A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett. 33(6), (2006).

  • 4.

    Spencer, R. G. M. et al. Detecting the signature of permafrost thaw in Arctic rivers. Geophys. Res. Lett. 42(8), 2830–2835 (2015).

    ADS 
    Article 

    Google Scholar 

  • 5.

    O’Donnell, J. A. et al. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon. Glob. Biogeochem. Cycles 30(12), 1811–1826 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Kirchman, D. L., Malmstrom, R. R. & Cottrell, M. T. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep Sea Res. Part II 52(24–26), 3386–3395 (2005).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Mann, P.J., Davydova, A., Zimov, N., Spencer, R.G.M., Davydov, S., Bulygina, E. et al. Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. J. Geophys. Res. Biogeosci. 117(G1), (2012).

  • 8.

    Crump, B. C., Kling, G. W., Bahr, M. & Hobbie, J. E. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69(4), 2253–2268 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Docherty, K. M., Young, K. C., Maurice, P. A. & Bridgham, S. D. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities. Microb. Ecol. 52(3), 378–388 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Elifantz, H., Malmstrom, R. R., Cottrell, M. T. & Kirchman, D. L. Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary. Appl. Environ. Microbiol. 71(12), 7799–7805 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Nalven, S. G. et al. Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo-alteration for freshwater microbes. Environ. Microbiol. 22(8), 3505–3521 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Ward, C. P. & Cory, R. M. Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils. Environ. Sci. Technol. 50(7), 3545–3553 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W. & Cory, R. M. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8(1), 772 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Kaiser, K., Canedo-Oropeza, M., McMahon, R. & Amon, R. M. W. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 7(1), 13064 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Soares, A. R. A., Lapierre, J. F., Selvam, B. P., Lindstrom, G. & Berggren, M. Controls on dissolved organic carbon bioreactivity in river systems. Sci. Rep. 9(1), 14897 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Pegau, W.S. Inherent optical properties of the central Arctic surface waters. J. Geophys. Res. Oceans, 107(C10), SHE-16 (2002).

  • 17.

    Kim, G. E., Pradal, M.-A. & Gnanadesikan, A. Increased surface ocean heating by colored detrital matter (CDM) linked to greater Northern Hemisphere ice formation in the GFDL CM2Mc ESM. J. Clim. 29(24), 9063–9076 (2016).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Laglera, L. M. et al. First quantification of the controlling role of Humic substances in the transport of iron across the surface of the Arctic Ocean. Environ. Sci. Technol. 53(22), 13136–13145 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Charette, M.A., Kipp, L.E., Jensen, L.T., Dabrowski, J.S., Whitmore, L.M., Fitzsimmons, J.N. et al. The transpolar drift as a source of riverine and shelf‐derived trace elements to the Central Arctic Ocean. J. Geophys. Res. Oceans 125(5), (2020). https://doi.org/10.1029/2019JC015920.

  • 20.

    Amon, R. M. W. et al. Dissolved organic matter sources in large Arctic rivers. Geochim. Cosmochim. Acta 94, 217–237 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Spencer, R.G.M., Aiken, G.R., Wickland, K.P., Striegl, R.G., Hernes, P.J. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob. Biogeochem. Cycles 22(4), (2008).

  • 22.

    Mann, P.J., Spencer, R.G.M., Hernes, P.J., Six, J., Aiken, G.R., Tank, S.E., et al. Pan-Arctic trends in terrestrial dissolved organic matter from optical measurements. Front. Earth Sci. 4(25), (2016).

  • 23.

    Hernes, P. J. & Benner, R. Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar. Chem. 100(1–2), 66–79 (2006).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Catalá, T.S., Reche, I., Fuentes-Lema, A., Romera-Castillo, C., Nieto-Cid, M., Ortega-Retuerta, E., et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nature communications 6(1), 1–9 (2015).

  • 25.

    Colatriano, D., Tran, P.Q., Guéguen, C., Williams, W.J., Lovejoy, C., Walsh, D.A. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun. Biol. 1(1), 1–9 (2018).

  • 26.

    Müller, O., Seuthe, L., Bratbak, G., Paulsen, M.L. Bacterial response to permafrost derived organic matter input in an Arctic Fjord. Front. Mar. Sci. 5(263), (2018).

  • 27.

    Kujawinski, E.B., Longnecker, K., Barott, K.L., Weber, R.J.M., Kido Soule, M.C. Microbial community structure affects marine dissolved organic matter composition. Front. Mar. Sci. 3(45), (2016).

  • 28.

    Avila, M. P. et al. Linking shifts in bacterial community with changes in dissolved organic matter pool in a tropical lake. Sci. Total Environ. 672, 990–1003 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Elifantz, H., Dittel, A. I., Cottrell, M. T. & Kirchman, D. L. Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat. Microb. Ecol. 50, 39–49 (2007).

    Article 

    Google Scholar 

  • 30.

    Lee, J. et al. Latitudinal distributions and controls of bacterial community composition during the summer of 2017 in Western Arctic Surface Waters (from the Bering Strait to the Chukchi Borderland). Sci. Rep. 9(1), 16822 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Fortunato, C. S. & Crump, B. C. Bacterioplankton community variation across river to ocean environmental gradients. Microb. Ecol. 62(2), 374–382 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Balmonte, J. P. et al. Sharp contrasts between freshwater and marine microbial enzymatic capabilities, community composition, and DOM pools in a NE Greenland fjord. Limnol. Oceanogr. 65(1), 77–95 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Sipler, R. E. et al. Microbial community response to terrestrially derived dissolved organic matter in the Coastal Arctic. Front. Microbiol. 8, 1018 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Scully, N. M., Cooper, W. J. & Tranvik, L. J. Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol. Ecol. 46(3), 353–357 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Bélanger, S., Xie, H., Krotkov, N., Larouche, P., Vincent, W.F., Babin, M. Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change. Glob. Biogeochem. Cycles 20(4), (2006).

  • 36.

    Timko, S.A., Maydanov, A., Pittelli, S.L., Conte, M.H., Cooper, W.J., Koch, B.P. et al. Depth-dependent photodegradation of marine dissolved organic matter. Front. Mar. Sci. 2(66) (2015).

  • 37.

    Pisani, O., Yamashita, Y. & Jaffe, R. Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool. Water Res. 45(13), 3836–3844 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Coble, P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51, 325–346 (1996).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Kothawala, D. N. et al. Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey. Glob. Chang Biol. 20(4), 1101–1114 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Paerl, R. W., Claudio, I. M., Shields, M. R., Bianchi, T. S. & Osburn, C. L. Dityrosine formation via reactive oxygen consumption yields increasingly recalcitrant humic-like fluorescent organic matter in the ocean. Limnol. Oceanogr. Lett. 5(5), 337–345 (2020).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Spencer, R.G.M., Aiken, G.R., Butler, K.D., Dornblaser, M.M., Striegl, R.G., Hernes, P.J. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska. Geophys. Res. Lett. 36(6), (2009).

  • 42.

    Maie, N., Scully, N. M., Pisani, O. & Jaffe, R. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res. 41(3), 563–570 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Hernes, P.J., Bergamaschi, B.A., Eckard, R.S., Spencer, R.G.M. Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J. Geophys. Res. 114(G4) (2009).

  • 44.

    Murphy, K. R., Stedmon, C. A., Wenig, P. & Bro, R. OpenFluor—An online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6(3), 658–661 (2014).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Lanzalunga, O. & Bietti, M. Photo- and radiation chemical induced degradation of lignin model compounds. J. Photochem. Photobiol. B 56(2–3), 85–108 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Brym, A. et al. Optical and chemical characterization of base-extracted particulate organic matter in coastal marine environments. Mar. Chem. 162, 96–113 (2014).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Tanentzap, A. J. et al. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl. Acad. Sci. USA 116(49), 24689–24695 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Jørgensen, L., Stedmon, C. A., Granskog, M. A. & Middelboe, M. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater. Geophys. Res. Lett. 41(7), 2481–2488 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 49.

    McDonald, N., Achterberg, E.P., Carlson, C.A., Gledhill, M., Liu, S., Matheson-Barker, J.R. et al. The role of heterotrophic bacteria and archaea in the transformation of lignin in the open ocean. Front. Mar. Sci. 6(743), (2019).

  • 50.

    Zark, M. & Dittmar, T. Universal molecular structures in natural dissolved organic matter. Nat. Commun. 9(1), 3178 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Harfmann, J. L. et al. Convergence of terrestrial dissolved organic matter composition and the role of microbial buffering in aquatic ecosystems. J. Geophys. Res. Biogeosci. 124(10), 3125–3142 (2019).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Wünsch, U. J., Bro, R., Stedmon, C. A., Wenig, P. & Murphy, K. R. Emerging patterns in the global distribution of dissolved organic matter fluorescence. Anal. Methods 11(7), 888–893 (2019).

    Article 

    Google Scholar 

  • 53.

    Fitch, A., Orland, C., Willer, D., Emilson, E. J. S. & Tanentzap, A. J. Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition. Glob. Chang Biol. 24(11), 5110–5122 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Saw, J.H.W., Nunoura, T., Hirai, M., Takaki, Y., Parsons, R., Michelsen, M. et al. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11(1), (2020).

  • 55.

    Min, D. W. et al. Abiotic formation of humic-like substances through freezing-accelerated reaction of phenolic compounds and nitrite. Environ. Sci. Technol. 53(13), 7410–7418 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Dagley, S. & Gibson, D. The bacterial degradation of catechol. Biochem. J. 95(2), 466–474 (1965).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Kraepiel, A. M., Bellenger, J. P., Wichard, T. & Morel, F. M. Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22(4), 573–581 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Stedmon, C. A. & Markager, S. Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing. Estuar. Coast. Shelf Sci. 57(5–6), 973–979 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 59.

    Servais, P., Courties, C., Lebaron, P. & Troussellier, M. Coupling bacterial activity measurements with cell sorting by flow cytometry. Microb. Ecol. 38(2), 180–189 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Newton, R. J. & Shade, A. Lifestyles of rarity: Understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Microb. Ecol. 78(1), 51–63 (2016).

    Article 

    Google Scholar 

  • 61.

    Amado, A. M., Cotner, J. B., Cory, R. M., Edhlund, B. L. & McNeill, K. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: Amino acids play a central role. Microb. Ecol. 69(3), 554–566 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11(4), 999–1010 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Gundersen, K., Bratbak, G., Heldal, M. Factors influencing the loss of bacteria in preserved seawater samples. Marine ecology progress
    series
    137, 305–310 (1996).

  • 64.

    Logozzo, L., Tzortziou, M., Neale, P., Clark, B. Photochemical and microbial degradation of chromophoric dissolved organic matter exported from tidal marshes. J. Geophys. Res. Biogeosci. 126, e2020JG005744. https://doi.org/10.1029/2020JG005744(2021).

  • 65.

    Tzortziou, M. et al. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnol. Oceanogr. 53(1), 148–159 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 66.

    Grunert B. bricegrunert/cdom: Version 1 (Version v1.0). 2020, December 23 (ed: Zenodo). https://doi.org/10.5281/zenodo.4391097

  • 67.

    Green, S. A. & Blough, N. V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 39(8), 1903–1916 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Weishaar, J. L. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37(20), 4702–4708 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Andersen, C. M. & Bro, R. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J. Chemom. 17(4), 200–215 (2003).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Bahram, M., Bro, R., Stedmon, C. & Afkhami, A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J. Chemom. 20(3–4), 99–105 (2006).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Murphy, K.R., Stedmon, C.A., Graeber, D., Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 5(23), 6557-6566 (2013).


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic