in

Global option space for organic agriculture is delimited by nitrogen availability

  • 1.

    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Bergström, L. & Kirchmann, H. Are the claimed benefits of organic agriculture justified? Nat. Plants 2, 16099 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Connor, D. J. Organic agriculture and food security: a decade of unreason finally implodes. Field Crops Res. 225, 128–129 (2018).

    Article 

    Google Scholar 

  • 6.

    Connor, D. J. Organic agriculture cannot feed the world. Field Crops Res. 106, 187–190 (2008).

    Article 

    Google Scholar 

  • 7.

    Erb, K. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Nowak, B., Nesme, T., David, C. & Pellerin, S. Disentangling the drivers of fertilising material inflows in organic farming. Nutr. Cycl. Agroecosyst. 96, 79–91 (2013).

    Article 

    Google Scholar 

  • 9.

    Oelofse, M., Jensen, L. S. & Magid, J. The implications of phasing out conventional nutrient supply in organic agriculture: Denmark as a case. Organ. Agric. 3, 41–55 (2013).

    Article 

    Google Scholar 

  • 10.

    Tayleur, C. & Phalan, B. Organic farming and deforestation. Nat. Plants 2, 16098 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Principles of Organic Agriculture (IFOAM, 2018); https://www.ifoam.bio/en/organic-landmarks/principles-organic-agriculture

  • 12.

    European Commission Commission Regulation (EC) No 889/2008. Official Journal of the European Union L 250/1 (2008).

  • 13.

    Yussefi-Menzler, M., Willer, H. & Sorensen, N. The World of Organic Agriculture. Statistics and Emerging Trends 2019 (Routledge, 2019); https://doi.org/10.4324/9781849775991

  • 14.

    Barbieri, P., Pellerin, S. & Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 7, 13761 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    McKenzie, F. C. & Williams, J. Sustainable food production: constraints, challenges and choices by 2050. Food Security https://doi.org/10.1007/s12571-015-0441-1 (2015).

  • 16.

    Rigby, D. & Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 68, 21–40 (2001).

    Article 

    Google Scholar 

  • 17.

    Barbieri, P., Pellerin, S., Seufert, V. & Nesme, T. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustain. 2, 378–385 (2019).

    Article 

    Google Scholar 

  • 18.

    Baudry, J. et al. Improvement of diet sustainability with increased level of organic food in the diet: findings from the BioNutriNet cohort. Am. J. Clin. Nutr. 109, 1173–1188 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Chaudhary, A., Gustafson, D. & Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 9, 848 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Smith, L. C. & Haddad, L. Reducing child undernutrition: past drivers and priorities for the post-MDG era. World Dev. 68, 180–204 (2015).

    Article 

    Google Scholar 

  • 21.

    Gibson, R. S. & Hotz, C. Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries. Br. J. Nutr. 85, S159 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Mie, A. et al. Human health implications of organic food and organic agriculture: a comprehensive review. Environ. Health 16, 1–22 (2017).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).

    ADS 
    Article 

    Google Scholar 

  • 24.

    White, R. R. & Hall, M. B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1707322114 (2017).

  • 25.

    Soussana, J. F. & Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agr. Ecosyst. Environ. 190, 9–17 (2014).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 12, 20150891 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Persson, U. M., Johansson, D. J. A., Cederberg, C., Hedenus, F. & Bryngelsson, D. Climate metrics and the carbon footprint of livestock products: where’s the beef? Environ. Res. Lett. 10, 034005 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).

    Article 

    Google Scholar 

  • 29.

    Eyhorn, F. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).

    Article 

    Google Scholar 

  • 30.

    Badgley, M. C. et al. Organic agriculture and the global food supply. Renew. Agr. Food Syst. 22, 86–108 (2007).

    Article 

    Google Scholar 

  • 31.

    Karlsson, J. O. & Röös, E. Resource-efficient use of land and animals—environmental impacts of food systems based on organic cropping and avoided food-feed competition. Land Use Policy 85, 63–72 (2019).

    Article 

    Google Scholar 

  • 32.

    Watson, C. A. et al. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manage. 18, 264–273 (2002).

    Article 

    Google Scholar 

  • 33.

    Nowak, B., Nesme, T., David, C. & Pellerin, S. To what extent does organic farming rely on nutrient inflows from conventional farming? Environ. Res. Lett. 8, 044045 (2013).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Feuerbacher, A., Luckmann, J., Boysen, O., Zikeli, S. & Grethe, H. Is Bhutan destined for 100% organic? Assessing the economy-wide effects of a large-scale conversion policy. PLoS ONE 13, e0199025 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1396 (2015).

  • 36.

    Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).

    Article 

    Google Scholar 

  • 37.

    Hoornweg, D. & Bhada-Tata, P. What a Waste. A Global Review of Solid Waste Management (World Bank, 2012).

  • 38.

    Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Tuomisto, H. L., Hodge, I. D., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manage. 112, 309–320 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Crowder, D. W. & Reganold, J. P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl Acad. Sci. USA 112, 7611–7616 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Bartelt, K. D. & Bland, W. L. Theoretical analysis of manure transport distance as a function of herd size and landscape fragmentation. J. Soil Water Conserv. 62, 345–352 (2007).

    Google Scholar 

  • 42.

    De Klein, C. et al. in IPCC Guidelines for National Greenhouse Gas Inventories (eds Buendia, L. & Eggleston, S.) Ch. 11 (IPCC, 2006).

  • 43.

    Godard, C., Roger-Estrade, J., Jayet, P. A., Brisson, N. & Le Bas, C. Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU. Agric. Syst. 97, 68–82 (2008).

    Article 

    Google Scholar 

  • 44.

    Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycling Agroecosyst. 66, 119–131 (2003).

    Article 

    Google Scholar 

  • 45.

    Dong, H. et al. in IPCC Guidelines for National Greenhouse Gas Inventories (eds Buendia, L. & Eggleston, S.) Ch. 10 (IPCC, 2006).

  • 46.

    Hogh-Jensen, H., Loges, R., Jorgensen, F. V., Vinther, F. P. & Jensen, E. S. An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Agric. Syst. 82, 181–194 (2004).

    Article 

    Google Scholar 

  • 47.

    Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cycles 20, GB4003 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Licker, R. et al. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010).

    Article 

    Google Scholar 

  • 51.

    Srednicka-Tober, D. et al. Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. Br. J. Nutr. 115, 994–1011 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Van Drecht, G., Bouwman, A. F., Harrison, J. & Knoop, J. M. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob. Biogeochem. Cycles 23, 1–19 (2009).

    Google Scholar 

  • 54.

    World Population Prospects 2015—Data Booklet (United Nations, 2015); https://doi.org/ST/ESA/SER.A/377

  • 55.

    Ahmed, S. & Blumberg, J. Dietary guidelines for Americans, 2010. Nutr. Rev. https://doi.org/10.1016/S0300-7073(05)71075-6 (2009).

  • 56.

    Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain 3, 200–208 (2020).

    Article 

    Google Scholar 

  • 57.

    Fetzel, T. et al. Quantification of uncertainties in global grazing systems assessment. Glob. Biogeochem. Cycles 31, 1089–1102 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic