in

Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds

  • 1.

    Chiappe, L. M. in Encyclopedia of Dinosaurs (eds Currie, P. J. & Padian, K.) 32–38 (Academic, 1997).

  • 2.

    Mayr, G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance (Wiley, 2017).

  • 3.

    O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).

    Article 

    Google Scholar 

  • 4.

    Benton, M. J. Vertebrate Palaeontology (Wiley, 2015).

  • 5.

    Chatterjee, S. The Rise of Birds: 225 Million Years of Evolution (Johns Hopkins Univ. Press, 2015).

  • 6.

    Chiappe, L. M. & Qingjin, M. Birds of Stone Chinese Avian Fossils from the Age of Dinosaurs (Johns Hopkins Univ. Press, 2016).

  • 7.

    Ksepka, D. T., Grande, L. & Mayr, G. Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines. Curr. Biol. 29, 657–663 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    O’Connor, J. K. & Zhou, Z. The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 63, 13–27 (2020).

    Article 

    Google Scholar 

  • 9.

    Zhou, Z., Barrett, P. M. & Hilton, J. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421, 807–814 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Zheng, X. et al. Fossil evidence of avian crops from the Early Cretaceous of China. Proc. Natl Acad. Sci. USA 108, 15904–15907 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Miller, C. V. et al. Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun. Biol. 3, 519 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Miller, C. & Pittman, M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. ESSOAr https://doi.org/10.1002/essoar.10504068.2 (2020).

    Article 

    Google Scholar 

  • 14.

    Wang, M., Wang, X., Wang, Y. & Zhou, Z. A new basal bird from China with implications for morphological diversity in early birds. Sci. Rep. 6, 19700 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Zanno, L. E. & Makovicky, P. J. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proc. Natl Acad. Sci. USA 108, 232–237 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Compr. Physiol. 3, 741–783 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Karasov, W. H., Martinez del Rio, C. & Caviedes-Vidal, E. Ecological physiology of diet and digestive systems. Annu. Rev. Physiol. 73, 69–93 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Miller, S. A. & Harley, J. P. Zoology (McGraw-Hill, 2016).

  • 19.

    Corring, T. The adaptation of digestive enzymes to the diet: its physiological significance. Reprod. Nutr. Dev. 20, 1217–1235 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    German, D. P., Horn, M. H. & Gawlicka, A. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol. Biochem. Zool. 77, 789–804 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Hidalgo, M., Urea, E. & Sanz, A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170, 267–283 (1998).

    Article 

    Google Scholar 

  • 22.

    Karasov, W. H. & Diamond, J. M. Interplay between physiology and ecology in digestion: intestinal nutrient transporters vary within and between species according to diet. BioScience 38, 602–611 (1988).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Hecker, N., Sharma, V. & Hiller, M. Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proc. Natl Acad. Sci. USA 116, 3036–3041 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Schondube, J. E., Herrera-M, L. G. & del Rio, C. M. Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104, 59–73 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Wang, Z. et al. Evolution of digestive enzyme genes associated with dietary diversity of crabs. Genetica 148, 87–99 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Wang, Z. et al. Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans. Mol. Biol. Evol. 33, 3144–3157 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Mayo Clinic. Encyclopedia of Foods: a Guide to Healthy Nutrition (Academic, 2002).

  • 28.

    Chen, Y.-H. & Zhao, H. Evolution of digestive enzymes and dietary diversification in birds. PeerJ 7, e6840 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Wu, Y. et al. Genomic bases underlying the adaptive radiation of core landbirds. Preprint at bioRxiv https://doi.org/10.1101/2020.07.29.222281 (2020).

  • 30.

    Wu, Y. & Wang, H. Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality. Proc. Biol. Sci. 286, 20182185 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Wu, Y., Wang, H. & Hadly, E. A. Invasion of ancestral mammals into dim-light environments inferred from adaptive evolution of the phototransduction genes. Sci. Rep. 7, 46542 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Wu, Y., Wang, H., Wang, H. & Feng, J. Arms race of temporal partitioning between carnivorous and herbivorous mammals. Sci. Rep. 8, 1713 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Naim, H. Y., Sterchi, E. & Lentze, M. Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J. Biol. Chem. 263, 7242–7253 (1988).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Boll, W., Wagner, P. & Mantei, N. Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase. Am. J. Hum. Genet. 48, 889–902 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Furuta, H. et al. Sequence of human hexokinase III cDNA and assignment of the human hexokinase III gene (HK3) to chromosome band 5q35. 2 by fluorescence in situ hybridization. Genomics 36, 206–209 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Wright, E., Hirayama, B. & Loo, D. Active sugar transport in health and disease. J. Intern. Med. 261, 32–43 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Cura, A. J. & Carruthers, A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr. Physiol. 2, 863–914 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Douard, V. & Ferraris, R. P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 295, E227–E237 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 34, 121–138 (2013).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Li, Y. et al. N-myc downstream-regulated gene 2, a novel estrogen-targeted gene, is involved in the regulation of Na+/K+-ATPase. J. Biol. Chem. 286, 32289–32299 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 34, 281–303 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Izar, M. C., Tegani, D. M., Kasmas, S. H. & Fonseca, F. A. Phytosterols and phytosterolemia: gene–diet interactions. Genes Nutr. 6, 17–26 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Takeuchi, K. & Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296, E1195–E1209 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Mangaraj, M., Nanda, R. & Panda, S. Apolipoprotein AI a molecule of diverse function. Indian J. Clin. Biochem. 31, 253–259 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Qu, J., Ko, C.-W., Tso, P. & Bhargava, A. Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8, 319 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Hazard, S. E. & Patel, S. B. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflug. Arch. 453, 745–752 (2007).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Frølund, S., Holm, R., Brodin, B. & Nielsen, C. U. The proton‐coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly‐Gly, Gly‐Sar and other Gly‐Gly mimetics. Br. J. Pharm. 161, 589–600 (2010).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Szabó, A., Pilsak, C., Bence, M., Witt, H. & Sahin-Tóth, M. Complex formation of human proelastases with procarboxypeptidases A1 and A2. J. Biol. Chem. 291, 17706–17716 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Crisman, J. M., Zhang, B., Norman, L. P. & Bond, J. S. Deletion of the mouse meprin β metalloprotease gene diminishes the ability of leukocytes to disseminate through extracellular matrix. J. Immunol. 172, 4510–4519 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Erşahin, Ç., Szpaderska, A. M., Orawski, A. T. & Simmons, W. H. Aminopeptidase P isozyme expression in human tissues and peripheral blood mononuclear cell fractions. Arch. Biochem. Biophys. 435, 303–310 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Higuchi, Y. et al. Mutations in MME cause an autosomal‐recessive Charcot–Marie–Tooth disease type 2. Ann. Neurol. 79, 659–672 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Lambeir, A.-M., Durinx, C., Scharpé, S. & De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab Sci. 40, 209–294 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Yamamoto, K. K. et al. Isolation of a cDNA encoding a human serum marker for acute pancreatitis. Identification of pancreas-specific protein as pancreatic procarboxypeptidase B. J. Biol. Chem. 267, 2575–2581 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Liang, R. et al. Human intestinal H+/peptide cotransporter cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270, 6456–6463 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Johansson, B. B. et al. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 18, 12–19 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Shen, W.-J., Azhar, S. & Kraemer, F. B. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Stahl, A. et al. Identification of the major intestinal fatty acid transport protein. Mol. Cell 4, 299–308 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Hussain, M. M., Rava, P., Walsh, M., Rana, M. & Iqbal, J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. 9, 14 (2012).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Ludvik, A. E. et al. HKDC1 is a novel hexokinase involved in whole-body glucose use. Endocrinology 157, 3452–3461 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Wang, N. & Tall, A. R. Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 1178–1184 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 56, 2238–2247 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Tousignant, K. D. et al. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol. Cancer Res. 17, 1166–1179 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Cui, X.-L., Schlesier, A. M., Fisher, E. L., Cerqueira, C. & Ferraris, R. P. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1310–G1320 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Cappello, A. R., Curcio, R., Lappano, R., Maggiolini, M. & Dolce, V. The physiopathological role of the exchangers belonging to the SLC37 family. Front. Chem. 6, 122 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011).

    Article 

    Google Scholar 

  • 69.

    Yahia, E. M. Fruit and Vegetable Phytochemicals: Chemistry and Human Health (Wiley, 2018).

  • 70.

    Caviedes-Vidal, E. et al. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc. Natl Acad. Sci. USA 104, 19132–19137 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Frei, S. et al. Comparative digesta retention patterns in ratites. Auk 132, 119–131 (2015).

    Article 

    Google Scholar 

  • 72.

    Price, E. R., Brun, A., Caviedes-Vidal, E. & Karasov, W. H. Digestive adaptations of aerial lifestyles. Physiology 30, 69–78 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Larson, D. W., Brown, C. M. & Evans, D. C. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26, 1325–1333 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Matsukawa, M., Shibata, K., Sato, K., Xing, X. & Lockley, M. G. The Early Cretaceous terrestrial ecosystems of the Jehol Biota based on food-web and energy-flow models. Biol. J. Linn. Soc. 113, 836–853 (2014).

    Article 

    Google Scholar 

  • 75.

    Wolff, R. L. et al. Abietoid seed fatty acid composition—a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae. Lipids 37, 17–26 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Wolff, R. L., Pédrono, F., Pasquier, E. & Marpeau, A. M. General characteristics of Pinus spp. Sseed fatty acid compositions, and importance of Δ5‐olefinic acids in the taxonomy and phylogeny of the genus. Lipids 35, 1–22 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).

  • 78.

    Clench, M. H. & Mathias, J. R. The avian cecum: a review. Wilson Bull. 107, 93–121 (1995).

    Google Scholar 

  • 79.

    Li, Z. et al. Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds. BMC Evol. Biol. 20, 46 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Ma, W., Pittman, M., Lautenschlager, S., Meade, L. E. & Xu, X. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 229–249 (Scientific Publications of the American Museum of Natural History, 2020).

  • 81.

    Barrett, P. M. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Planet Sci. 42, 207–230 (2014).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Zanno, L. E., Gillette, D. D., Albright, L. B. & Titus, A. L. A new North American therizinosaurid and the role of herbivory in ‘predatory’dinosaur evolution. Proc. R. Soc. B 276, 3505–3511 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 83.

    Cowen, R. History to Life (Wiley, 2013).

  • 84.

    You, H.-l et al. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312, 1640–1643 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 86.

    Brusatte, S. L. Dinosaur Paleobiology (Wiley, 2012).

  • 87.

    Button, K., You, H., Kirkland, J. I. & Zanno, L. Incremental growth of therizinosaurian dental tissues: implications for dietary transitions in Theropoda. PeerJ 5, e4129 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 88.

    Han, G. et al. A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance. Nat. Commun. 5, 4382 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 89.

    O’Connor, J. et al. Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29, 2423–2429 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 90.

    O’Connor, J., Zhou, Z. & Xu, X. Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proc. Natl Acad. Sci. USA 108, 19662–19665 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 91.

    Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 92.

    Wang, S., Stiegler, J., Wu, P. & Chuong, C.-M. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 205–228 (Scientific Publications of the American Museum of Natural History, 2020).

  • 93.

    Farlow, J. O. & Holtz, T. R. The fossil record of predation in dinosaurs. Paleontol. Soc. Pap. 8, 251–266 (2002).

    Article 

    Google Scholar 

  • 94.

    Pittman, M. et al. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 37–95 (Scientific Publications of the American Museum of Natural History, 2020).

  • 95.

    Benson, R. B. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 96.

    Lee, M. S., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 97.

    O’Connor, J. & Zhou, Z. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J. Ornithol. 156, 333–342 (2015).

    Article 

    Google Scholar 

  • 98.

    Zhou, Z. & Zhang, F. A precocial avian embryo from the Lower Cretaceous of China. Science 306, 653 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Mayr, G. Evolution of avian breeding strategies and its relation to the habitat preferences of Mesozoic birds. Evol. Ecol. 31, 131–141 (2017).

    Article 

    Google Scholar 

  • 100.

    Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).

    Article 

    Google Scholar 

  • 101.

    Jackson, B. E., Segre, P. & Dial, K. P. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment. Proc. R. Soc. B 276, 3457–3466 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 102.

    Colquhoun, I. Comparing the impact of predators on the activity patterns of lemurids and ceboids. Folia Primatol. 77, 143–165 (2006).

    Article 

    Google Scholar 

  • 103.

    Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 104.

    Wu, Y. Evolutionary origin of nocturnality in birds. eLS 1, 483–489 (2020).

    Article 

    Google Scholar 

  • 105.

    Xu, X., Zhou, Z. & Wang, X. The smallest known non-avian theropod dinosaur. Nature 408, 705–708 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 106.

    Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 107.

    Gong, E., Martin, L. D., Burnham, D. A. & Falk, A. R. The birdlike raptor Sinornithosaurus was venomous. Proc. Natl Acad. Sci. USA 107, 766–768 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 108.

    Sullivan, C., Xu, X. & O’Connor, J. K. Complexities and novelties in the early evolution of avian flight, as seen in the Mesozoic Yanliao and Jehol Biotas of Northeast China. Palaeoworld 26, 212–229 (2017).

    Article 

    Google Scholar 

  • 109.

    Pei, R. et al. Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds. Curr. Biol. 30, 4033–4046 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 110.

    Turner, A. H., Pol, D., Clarke, J. A., Erickson, G. M. & Norell, M. A. A basal dromaeosaurid and size evolution preceding avian flight. Science 317, 1378–1381 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 111.

    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 112.

    Gittleman, J. L. Carnivore body size: ecological and taxonomic correlates. Oecologia 67, 540–554 (1985).

    PubMed 
    Article 

    Google Scholar 

  • 113.

    Radloff, F. G. & Du Toit, J. T. Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. J. Anim. Ecol. 73, 410–423 (2004).

    Article 

    Google Scholar 

  • 114.

    Vézina, A. F. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67, 555–565 (1985).

    PubMed 
    Article 

    Google Scholar 

  • 115.

    Rezende, E. L., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaw4486 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 116.

    Seebacher, F. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29, 105–122 (2003).

    Article 

    Google Scholar 

  • 117.

    Chatterjee, S. & Templin, R. in Feathered Dragons: Studies on the Transition from Dinosaurs to Birds (eds Currie, P. J., Kopplehaus, E. B., Shugar, M. A. & Wright, J. L.) 251–281 (Indiana Univ. Press, 2004).

  • 118.

    Hedenström, A. How birds became airborne. Trends Ecol. Evol. 14, 375–376 (1999).

    PubMed 
    Article 

    Google Scholar 

  • 119.

    Dudley, R. et al. Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu. Rev. Ecol. Evol. Syst. 38, 179–201 (2007).

    Article 

    Google Scholar 

  • 120.

    Clemente, C. & Wilson, R. Speed and maneuverability jointly determine escape success during simulated games of escape behaviour. Behav. Ecol. 27, 45–54 (2016).

    Article 

    Google Scholar 

  • 121.

    Caro, T. Antipredator Defenses in Birds and Mammals (Univ. Chicago Press, 2005).

  • 122.

    Van den Hout, P. J., Mathot, K. J., Maas, L. R. & Piersma, T. Predator escape tactics in birds: linking ecology and aerodynamics. Behav. Ecol. 21, 16–25 (2010).

    Article 

    Google Scholar 

  • 123.

    Wright, N. A., Steadman, D. W. & Witt, C. C. Predictable evolution toward flightlessness in volant island birds. Proc. Natl Acad. Sci. USA 113, 4765–4770 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 124.

    Wang, M., Zhou, Z. & Sullivan, C. A fish-eating enantiornithine bird from the Early Cretaceous of China provides evidence of modern avian digestive features. Curr. Biol. 26, 1170–1176 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 125.

    Zheng, X. et al. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS ONE 9, e95036 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 126.

    Zhou, Z., Zhang, F. & Li, Z. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc. R. Soc. B 277, 219–227 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 127.

    Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D. & Springer, M. S. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346, 1254390 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 128.

    Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60–67 (1985).

    PubMed 
    Article 

    Google Scholar 

  • 129.

    Lima, S. L., Valone, T. J. & Caraco, T. Foraging-efficiency-predation-risk trade-off in the grey squirrel. Anim. Behav. 33, 155–165 (1985).

    Article 

    Google Scholar 

  • 130.

    Verdolin, J. L. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav. Ecol. Sociobiol. 60, 457–464 (2006).

    Article 

    Google Scholar 

  • 131.

    Yang, T.-R. & Sander, P. M. The origin of the bird’s beak: new insights from dinosaur incubation periods. Biol. Lett. 14, 20180090 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 132.

    Zhou, Y.-C., Sullivan, C. & Zhang, F. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vert. Palas 57, 38–50 (2019).

    Google Scholar 

  • 133.

    Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 134.

    Randall, D., Burggren, W. & French, K. Eckert Animal Physiology: Mechanisms and Adaptations (W. H. Freeman, 1997).

  • 135.

    Davit‐Béal, T., Tucker, A. S. & Sire, J. Y. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J. Anat. 214, 477–501 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 136.

    Gill, F. & Donsker, D. IOC World Bird List (v8.2). https://doi.org/10.14344/IOC.ML.8.2 (2018).

  • 137.

    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 138.

    Crawford, N. G. et al. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 139.

    Guillon, J.-M., Guéry, L., Hulin, V. & Girondot, M. A large phylogeny of turtles (Testudines) using molecular data. Contrib. Zool. 81, 147–158 (2012).

    Article 

    Google Scholar 

  • 140.

    Jønsson, K. A. & Fjeldså, J. A phylogenetic supertree of oscine passerine birds (Aves: Passeri). Zool. Scr. 35, 149–186 (2006).

    Article 

    Google Scholar 

  • 141.

    McKay, B. D., Barker, F. K., Mays, H. L. Jr, Doucet, S. M. & Hill, G. E. A molecular phylogenetic hypothesis for the manakins (Aves: Pipridae). Mol. Phylogenet. Evol. 55, 733–737 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 142.

    Oaks, J. R. A time‐calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285–3297 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 143.

    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 144.

    Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 145.

    Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Article 

    Google Scholar 

  • 146.

    Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic