Chiappe, L. M. in Encyclopedia of Dinosaurs (eds Currie, P. J. & Padian, K.) 32–38 (Academic, 1997).
Mayr, G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance (Wiley, 2017).
O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).
Google Scholar
Benton, M. J. Vertebrate Palaeontology (Wiley, 2015).
Chatterjee, S. The Rise of Birds: 225 Million Years of Evolution (Johns Hopkins Univ. Press, 2015).
Chiappe, L. M. & Qingjin, M. Birds of Stone Chinese Avian Fossils from the Age of Dinosaurs (Johns Hopkins Univ. Press, 2016).
Ksepka, D. T., Grande, L. & Mayr, G. Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines. Curr. Biol. 29, 657–663 (2019).
Google Scholar
O’Connor, J. K. & Zhou, Z. The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 63, 13–27 (2020).
Google Scholar
Zhou, Z., Barrett, P. M. & Hilton, J. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421, 807–814 (2003).
Google Scholar
Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).
Google Scholar
Zheng, X. et al. Fossil evidence of avian crops from the Early Cretaceous of China. Proc. Natl Acad. Sci. USA 108, 15904–15907 (2011).
Google Scholar
Miller, C. V. et al. Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun. Biol. 3, 519 (2020).
Google Scholar
Miller, C. & Pittman, M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. ESSOAr https://doi.org/10.1002/essoar.10504068.2 (2020).
Google Scholar
Wang, M., Wang, X., Wang, Y. & Zhou, Z. A new basal bird from China with implications for morphological diversity in early birds. Sci. Rep. 6, 19700 (2016).
Google Scholar
Zanno, L. E. & Makovicky, P. J. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proc. Natl Acad. Sci. USA 108, 232–237 (2011).
Google Scholar
Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Compr. Physiol. 3, 741–783 (2013).
Google Scholar
Karasov, W. H., Martinez del Rio, C. & Caviedes-Vidal, E. Ecological physiology of diet and digestive systems. Annu. Rev. Physiol. 73, 69–93 (2011).
Google Scholar
Miller, S. A. & Harley, J. P. Zoology (McGraw-Hill, 2016).
Corring, T. The adaptation of digestive enzymes to the diet: its physiological significance. Reprod. Nutr. Dev. 20, 1217–1235 (1980).
Google Scholar
German, D. P., Horn, M. H. & Gawlicka, A. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol. Biochem. Zool. 77, 789–804 (2004).
Google Scholar
Hidalgo, M., Urea, E. & Sanz, A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170, 267–283 (1998).
Google Scholar
Karasov, W. H. & Diamond, J. M. Interplay between physiology and ecology in digestion: intestinal nutrient transporters vary within and between species according to diet. BioScience 38, 602–611 (1988).
Google Scholar
Hecker, N., Sharma, V. & Hiller, M. Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proc. Natl Acad. Sci. USA 116, 3036–3041 (2019).
Google Scholar
Schondube, J. E., Herrera-M, L. G. & del Rio, C. M. Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104, 59–73 (2001).
Google Scholar
Wang, Z. et al. Evolution of digestive enzyme genes associated with dietary diversity of crabs. Genetica 148, 87–99 (2020).
Google Scholar
Wang, Z. et al. Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans. Mol. Biol. Evol. 33, 3144–3157 (2016).
Google Scholar
Mayo Clinic. Encyclopedia of Foods: a Guide to Healthy Nutrition (Academic, 2002).
Chen, Y.-H. & Zhao, H. Evolution of digestive enzymes and dietary diversification in birds. PeerJ 7, e6840 (2019).
Google Scholar
Wu, Y. et al. Genomic bases underlying the adaptive radiation of core landbirds. Preprint at bioRxiv https://doi.org/10.1101/2020.07.29.222281 (2020).
Wu, Y. & Wang, H. Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality. Proc. Biol. Sci. 286, 20182185 (2019).
Google Scholar
Wu, Y., Wang, H. & Hadly, E. A. Invasion of ancestral mammals into dim-light environments inferred from adaptive evolution of the phototransduction genes. Sci. Rep. 7, 46542 (2017).
Google Scholar
Wu, Y., Wang, H., Wang, H. & Feng, J. Arms race of temporal partitioning between carnivorous and herbivorous mammals. Sci. Rep. 8, 1713 (2018).
Google Scholar
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
Google Scholar
Naim, H. Y., Sterchi, E. & Lentze, M. Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J. Biol. Chem. 263, 7242–7253 (1988).
Google Scholar
Boll, W., Wagner, P. & Mantei, N. Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase. Am. J. Hum. Genet. 48, 889–902 (1991).
Google Scholar
Furuta, H. et al. Sequence of human hexokinase III cDNA and assignment of the human hexokinase III gene (HK3) to chromosome band 5q35. 2 by fluorescence in situ hybridization. Genomics 36, 206–209 (1996).
Google Scholar
Wright, E., Hirayama, B. & Loo, D. Active sugar transport in health and disease. J. Intern. Med. 261, 32–43 (2007).
Google Scholar
Cura, A. J. & Carruthers, A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr. Physiol. 2, 863–914 (2012).
Google Scholar
Douard, V. & Ferraris, R. P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 295, E227–E237 (2008).
Google Scholar
Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 34, 121–138 (2013).
Google Scholar
Li, Y. et al. N-myc downstream-regulated gene 2, a novel estrogen-targeted gene, is involved in the regulation of Na+/K+-ATPase. J. Biol. Chem. 286, 32289–32299 (2011).
Google Scholar
Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 34, 281–303 (2014).
Google Scholar
Izar, M. C., Tegani, D. M., Kasmas, S. H. & Fonseca, F. A. Phytosterols and phytosterolemia: gene–diet interactions. Genes Nutr. 6, 17–26 (2011).
Google Scholar
Takeuchi, K. & Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296, E1195–E1209 (2009).
Google Scholar
Mangaraj, M., Nanda, R. & Panda, S. Apolipoprotein AI a molecule of diverse function. Indian J. Clin. Biochem. 31, 253–259 (2016).
Google Scholar
Qu, J., Ko, C.-W., Tso, P. & Bhargava, A. Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8, 319 (2019).
Google Scholar
Hazard, S. E. & Patel, S. B. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflug. Arch. 453, 745–752 (2007).
Google Scholar
Frølund, S., Holm, R., Brodin, B. & Nielsen, C. U. The proton‐coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly‐Gly, Gly‐Sar and other Gly‐Gly mimetics. Br. J. Pharm. 161, 589–600 (2010).
Google Scholar
Szabó, A., Pilsak, C., Bence, M., Witt, H. & Sahin-Tóth, M. Complex formation of human proelastases with procarboxypeptidases A1 and A2. J. Biol. Chem. 291, 17706–17716 (2016).
Google Scholar
Crisman, J. M., Zhang, B., Norman, L. P. & Bond, J. S. Deletion of the mouse meprin β metalloprotease gene diminishes the ability of leukocytes to disseminate through extracellular matrix. J. Immunol. 172, 4510–4519 (2004).
Google Scholar
Erşahin, Ç., Szpaderska, A. M., Orawski, A. T. & Simmons, W. H. Aminopeptidase P isozyme expression in human tissues and peripheral blood mononuclear cell fractions. Arch. Biochem. Biophys. 435, 303–310 (2005).
Google Scholar
Higuchi, Y. et al. Mutations in MME cause an autosomal‐recessive Charcot–Marie–Tooth disease type 2. Ann. Neurol. 79, 659–672 (2016).
Google Scholar
Lambeir, A.-M., Durinx, C., Scharpé, S. & De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab Sci. 40, 209–294 (2003).
Google Scholar
Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).
Google Scholar
Yamamoto, K. K. et al. Isolation of a cDNA encoding a human serum marker for acute pancreatitis. Identification of pancreas-specific protein as pancreatic procarboxypeptidase B. J. Biol. Chem. 267, 2575–2581 (1992).
Google Scholar
Liang, R. et al. Human intestinal H+/peptide cotransporter cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270, 6456–6463 (1995).
Google Scholar
Johansson, B. B. et al. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 18, 12–19 (2018).
Google Scholar
Shen, W.-J., Azhar, S. & Kraemer, F. B. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018).
Google Scholar
Stahl, A. et al. Identification of the major intestinal fatty acid transport protein. Mol. Cell 4, 299–308 (1999).
Google Scholar
Hussain, M. M., Rava, P., Walsh, M., Rana, M. & Iqbal, J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. 9, 14 (2012).
Google Scholar
Ludvik, A. E. et al. HKDC1 is a novel hexokinase involved in whole-body glucose use. Endocrinology 157, 3452–3461 (2016).
Google Scholar
Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).
Google Scholar
Wang, N. & Tall, A. R. Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 1178–1184 (2003).
Google Scholar
Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 56, 2238–2247 (2015).
Google Scholar
Tousignant, K. D. et al. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol. Cancer Res. 17, 1166–1179 (2019).
Google Scholar
Cui, X.-L., Schlesier, A. M., Fisher, E. L., Cerqueira, C. & Ferraris, R. P. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1310–G1320 (2005).
Google Scholar
Cappello, A. R., Curcio, R., Lappano, R., Maggiolini, M. & Dolce, V. The physiopathological role of the exchangers belonging to the SLC37 family. Front. Chem. 6, 122 (2018).
Google Scholar
Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011).
Google Scholar
Yahia, E. M. Fruit and Vegetable Phytochemicals: Chemistry and Human Health (Wiley, 2018).
Caviedes-Vidal, E. et al. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc. Natl Acad. Sci. USA 104, 19132–19137 (2007).
Google Scholar
Frei, S. et al. Comparative digesta retention patterns in ratites. Auk 132, 119–131 (2015).
Google Scholar
Price, E. R., Brun, A., Caviedes-Vidal, E. & Karasov, W. H. Digestive adaptations of aerial lifestyles. Physiology 30, 69–78 (2015).
Google Scholar
Larson, D. W., Brown, C. M. & Evans, D. C. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26, 1325–1333 (2016).
Google Scholar
Matsukawa, M., Shibata, K., Sato, K., Xing, X. & Lockley, M. G. The Early Cretaceous terrestrial ecosystems of the Jehol Biota based on food-web and energy-flow models. Biol. J. Linn. Soc. 113, 836–853 (2014).
Google Scholar
Wolff, R. L. et al. Abietoid seed fatty acid composition—a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae. Lipids 37, 17–26 (2002).
Google Scholar
Wolff, R. L., Pédrono, F., Pasquier, E. & Marpeau, A. M. General characteristics of Pinus spp. Sseed fatty acid compositions, and importance of Δ5‐olefinic acids in the taxonomy and phylogeny of the genus. Lipids 35, 1–22 (2000).
Google Scholar
Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).
Clench, M. H. & Mathias, J. R. The avian cecum: a review. Wilson Bull. 107, 93–121 (1995).
Li, Z. et al. Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds. BMC Evol. Biol. 20, 46 (2020).
Google Scholar
Ma, W., Pittman, M., Lautenschlager, S., Meade, L. E. & Xu, X. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 229–249 (Scientific Publications of the American Museum of Natural History, 2020).
Barrett, P. M. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Planet Sci. 42, 207–230 (2014).
Google Scholar
Zanno, L. E., Gillette, D. D., Albright, L. B. & Titus, A. L. A new North American therizinosaurid and the role of herbivory in ‘predatory’dinosaur evolution. Proc. R. Soc. B 276, 3505–3511 (2009).
Google Scholar
Cowen, R. History to Life (Wiley, 2013).
You, H.-l et al. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312, 1640–1643 (2006).
Google Scholar
Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).
Google Scholar
Brusatte, S. L. Dinosaur Paleobiology (Wiley, 2012).
Button, K., You, H., Kirkland, J. I. & Zanno, L. Incremental growth of therizinosaurian dental tissues: implications for dietary transitions in Theropoda. PeerJ 5, e4129 (2017).
Google Scholar
Han, G. et al. A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance. Nat. Commun. 5, 4382 (2014).
Google Scholar
O’Connor, J. et al. Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29, 2423–2429 (2019).
Google Scholar
O’Connor, J., Zhou, Z. & Xu, X. Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proc. Natl Acad. Sci. USA 108, 19662–19665 (2011).
Google Scholar
Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).
Google Scholar
Wang, S., Stiegler, J., Wu, P. & Chuong, C.-M. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 205–228 (Scientific Publications of the American Museum of Natural History, 2020).
Farlow, J. O. & Holtz, T. R. The fossil record of predation in dinosaurs. Paleontol. Soc. Pap. 8, 251–266 (2002).
Google Scholar
Pittman, M. et al. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 37–95 (Scientific Publications of the American Museum of Natural History, 2020).
Benson, R. B. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).
Google Scholar
Lee, M. S., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).
Google Scholar
O’Connor, J. & Zhou, Z. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J. Ornithol. 156, 333–342 (2015).
Google Scholar
Zhou, Z. & Zhang, F. A precocial avian embryo from the Lower Cretaceous of China. Science 306, 653 (2004).
Google Scholar
Mayr, G. Evolution of avian breeding strategies and its relation to the habitat preferences of Mesozoic birds. Evol. Ecol. 31, 131–141 (2017).
Google Scholar
Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).
Google Scholar
Jackson, B. E., Segre, P. & Dial, K. P. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment. Proc. R. Soc. B 276, 3457–3466 (2009).
Google Scholar
Colquhoun, I. Comparing the impact of predators on the activity patterns of lemurids and ceboids. Folia Primatol. 77, 143–165 (2006).
Google Scholar
Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).
Google Scholar
Wu, Y. Evolutionary origin of nocturnality in birds. eLS 1, 483–489 (2020).
Google Scholar
Xu, X., Zhou, Z. & Wang, X. The smallest known non-avian theropod dinosaur. Nature 408, 705–708 (2000).
Google Scholar
Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).
Google Scholar
Gong, E., Martin, L. D., Burnham, D. A. & Falk, A. R. The birdlike raptor Sinornithosaurus was venomous. Proc. Natl Acad. Sci. USA 107, 766–768 (2010).
Google Scholar
Sullivan, C., Xu, X. & O’Connor, J. K. Complexities and novelties in the early evolution of avian flight, as seen in the Mesozoic Yanliao and Jehol Biotas of Northeast China. Palaeoworld 26, 212–229 (2017).
Google Scholar
Pei, R. et al. Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds. Curr. Biol. 30, 4033–4046 (2020).
Google Scholar
Turner, A. H., Pol, D., Clarke, J. A., Erickson, G. M. & Norell, M. A. A basal dromaeosaurid and size evolution preceding avian flight. Science 317, 1378–1381 (2007).
Google Scholar
Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).
Google Scholar
Gittleman, J. L. Carnivore body size: ecological and taxonomic correlates. Oecologia 67, 540–554 (1985).
Google Scholar
Radloff, F. G. & Du Toit, J. T. Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. J. Anim. Ecol. 73, 410–423 (2004).
Google Scholar
Vézina, A. F. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67, 555–565 (1985).
Google Scholar
Rezende, E. L., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaw4486 (2020).
Google Scholar
Seebacher, F. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29, 105–122 (2003).
Google Scholar
Chatterjee, S. & Templin, R. in Feathered Dragons: Studies on the Transition from Dinosaurs to Birds (eds Currie, P. J., Kopplehaus, E. B., Shugar, M. A. & Wright, J. L.) 251–281 (Indiana Univ. Press, 2004).
Hedenström, A. How birds became airborne. Trends Ecol. Evol. 14, 375–376 (1999).
Google Scholar
Dudley, R. et al. Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu. Rev. Ecol. Evol. Syst. 38, 179–201 (2007).
Google Scholar
Clemente, C. & Wilson, R. Speed and maneuverability jointly determine escape success during simulated games of escape behaviour. Behav. Ecol. 27, 45–54 (2016).
Google Scholar
Caro, T. Antipredator Defenses in Birds and Mammals (Univ. Chicago Press, 2005).
Van den Hout, P. J., Mathot, K. J., Maas, L. R. & Piersma, T. Predator escape tactics in birds: linking ecology and aerodynamics. Behav. Ecol. 21, 16–25 (2010).
Google Scholar
Wright, N. A., Steadman, D. W. & Witt, C. C. Predictable evolution toward flightlessness in volant island birds. Proc. Natl Acad. Sci. USA 113, 4765–4770 (2016).
Google Scholar
Wang, M., Zhou, Z. & Sullivan, C. A fish-eating enantiornithine bird from the Early Cretaceous of China provides evidence of modern avian digestive features. Curr. Biol. 26, 1170–1176 (2016).
Google Scholar
Zheng, X. et al. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS ONE 9, e95036 (2014).
Google Scholar
Zhou, Z., Zhang, F. & Li, Z. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc. R. Soc. B 277, 219–227 (2010).
Google Scholar
Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D. & Springer, M. S. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346, 1254390 (2014).
Google Scholar
Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60–67 (1985).
Google Scholar
Lima, S. L., Valone, T. J. & Caraco, T. Foraging-efficiency-predation-risk trade-off in the grey squirrel. Anim. Behav. 33, 155–165 (1985).
Google Scholar
Verdolin, J. L. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav. Ecol. Sociobiol. 60, 457–464 (2006).
Google Scholar
Yang, T.-R. & Sander, P. M. The origin of the bird’s beak: new insights from dinosaur incubation periods. Biol. Lett. 14, 20180090 (2018).
Google Scholar
Zhou, Y.-C., Sullivan, C. & Zhang, F. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vert. Palas 57, 38–50 (2019).
Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).
Google Scholar
Randall, D., Burggren, W. & French, K. Eckert Animal Physiology: Mechanisms and Adaptations (W. H. Freeman, 1997).
Davit‐Béal, T., Tucker, A. S. & Sire, J. Y. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J. Anat. 214, 477–501 (2009).
Google Scholar
Gill, F. & Donsker, D. IOC World Bird List (v8.2). https://doi.org/10.14344/IOC.ML.8.2 (2018).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
Google Scholar
Crawford, N. G. et al. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257 (2015).
Google Scholar
Guillon, J.-M., Guéry, L., Hulin, V. & Girondot, M. A large phylogeny of turtles (Testudines) using molecular data. Contrib. Zool. 81, 147–158 (2012).
Google Scholar
Jønsson, K. A. & Fjeldså, J. A phylogenetic supertree of oscine passerine birds (Aves: Passeri). Zool. Scr. 35, 149–186 (2006).
Google Scholar
McKay, B. D., Barker, F. K., Mays, H. L. Jr, Doucet, S. M. & Hill, G. E. A molecular phylogenetic hypothesis for the manakins (Aves: Pipridae). Mol. Phylogenet. Evol. 55, 733–737 (2010).
Google Scholar
Oaks, J. R. A time‐calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285–3297 (2011).
Google Scholar
Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
Google Scholar
Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).
Google Scholar
Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
Google Scholar
Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).
Google Scholar
Source: Ecology - nature.com