in

Light and energetics at seasonal extremes limit poleward range shifts

  • 1.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article 

    Google Scholar 

  • 3.

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Article 

    Google Scholar 

  • 5.

    Robinson, L. M. et al. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20, 789–802 (2011).

    Article 

    Google Scholar 

  • 6.

    Guisan, A. et al. Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 43, 386–392 (2006).

    Article 

    Google Scholar 

  • 7.

    Wilson, R. P., Culik, B., Coria, N. R., Adelung, D. & Spairani, H. J. Foraging rhythms in Adélie penguins (Pygoscelis adeliae) at Hope Bay, Antarctica; determination and control. Polar Biol. 10, 161–165 (1989).

    Google Scholar 

  • 8.

    Aksnes, D. & Utne, A. C. W. A revised model of visual range in fish. Sarsia 4827, 37–41 (1997).

    Google Scholar 

  • 9.

    Johansen, R., Barrett, R. T. & Pedersen, T. Foraging strategies of great cormorants Phalacrocorax carbo carbo wintering north of the Arctic Circle. Bird Study 48, 59–67 (2001).

    Article 

    Google Scholar 

  • 10.

    Varpe, Ø. Life history adaptations to seasonality. Integr. Comp. Biol. 57, 943–960 (2017).

    Article 

    Google Scholar 

  • 11.

    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

    Article 

    Google Scholar 

  • 12.

    Saikkonen, K. et al. Climate change-driven species’ range shifts filtered by photoperiodism. Nat. Clim. Change 2, 239–242 (2012).

    Article 

    Google Scholar 

  • 13.

    Bradshaw, W. E. & Holzapfel, C. M. Light, time, and the physiology of biotic response to rapid climate change in animals. Annu. Rev. Physiol. 72, 147–166 (2010).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Huffeldt, N. P. Photic barriers to poleward range-shifts. Trends Ecol. Evol. 35, 652–655 (2020).

    Article 

    Google Scholar 

  • 15.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article 

    Google Scholar 

  • 16.

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 

    Google Scholar 

  • 17.

    Kaartvedt, S. Photoperiod may constrain the effect of global warming in arctic marine systems. J. Plankton Res. 30, 1203–1206 (2008).

    Article 

    Google Scholar 

  • 18.

    Sundby, S., Drinkwater, K. F. & Kjesbu, O. S. The North Atlantic spring-bloom system—where the changing climate meets the winter dark. Front. Mar. Sci. 3, 28 (2016).

    Article 

    Google Scholar 

  • 19.

    Langbehn, T. J. & Varpe, Ø. Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans. Glob. Chang. Biol. 23, 5318–5330 (2017).

    Article 

    Google Scholar 

  • 20.

    Irigoien, X., Klevjer, T. A. & Røstad, A. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Geoffroy, M. et al. Mesopelagic sound scattering layers of the high Arctic: seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 6, 364 (2019).

    Article 

    Google Scholar 

  • 22.

    Jobling, M. Fish Bioenergetics (Chapman & Hall, 1994).

  • 23.

    Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser. 636, 1–18 (2020).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Enberg, K. et al. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar. Ecol. 33, 1–25 (2012).

    Article 

    Google Scholar 

  • 25.

    Langbehn, T., Aksnes, D., Kaartvedt, S., Fiksen, Ø. & Jørgensen, C. Light comfort zone in a mesopelagic fish emerges from adaptive behaviour along a latitudinal gradient. Mar. Ecol. Prog. Ser. 623, 161–174 (2019).

    Article 

    Google Scholar 

  • 26.

    Røstad, A., Kaartvedt, S. & Aksnes, D. L. Erratum to ‘Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments’ [Deep Sea Res. I 113 (2016) 1–6]. Deep Sea Res. I Oceanogr. Res. Pap. 114, 162–164 (2016).

  • 27.

    Røstad, A., Kaartvedt, S. & Aksnes, D. L. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments. Deep Sea Res. I Oceanogr. Res. Pap. 113, 1–6 (2016).

  • 28.

    Clark, C. W. & Levy, D. A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am. Nat. 131, 271–290 (1988).

    Article 

    Google Scholar 

  • 29.

    Scheuerell, M. D. & Schindler, D. E. Diel vertical migration by juvenile sockeye salmon: empirical evidence for the antipredation window. Ecology 84, 1713–1720 (2003).

    Article 

    Google Scholar 

  • 30.

    Boyce, M. S. Seasonality and patterns of natural selection for life histories. Am. Nat. 114, 569–583 (1979).

    Article 

    Google Scholar 

  • 31.

    Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Chapman & Hall, 1992).

  • 32.

    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).

  • 33.

    Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118, 363–370 (2009).

    Article 

    Google Scholar 

  • 34.

    Hagen, W. & Auel, H. Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104, 313–326 (2001).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).

    Article 

    Google Scholar 

  • 36.

    Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741–752 (2015).

    Article 

    Google Scholar 

  • 37.

    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    Article 

    Google Scholar 

  • 38.

    Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish. Fish. 10, 235–251 (2009).

    Article 

    Google Scholar 

  • 39.

    Sinclair, S. J., White, M. D. & Newell, G. R. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 15, 8 (2010).

    Article 

    Google Scholar 

  • 40.

    Twiname, S. et al. A cross-scale framework to support a mechanistic understanding and modelling of marine climate-driven species redistribution, from individuals to communities. Ecography 43, 1764–1778 (2020).

  • 41.

    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).

    Article 

    Google Scholar 

  • 42.

    Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).

    Article 

    Google Scholar 

  • 43.

    Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).

    Article 

    Google Scholar 

  • 44.

    Saunders, R. A., Collins, M. A., Stowasser, G. & Tarling, G. A. Southern Ocean mesopelagic fish communities in the Scotia Sea are sustained by mass immigration. Mar. Ecol. Prog. Ser. 569, 173–185 (2017).

    Article 

    Google Scholar 

  • 45.

    Audzijonyte, A. et al. Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economic modules. Methods Ecol. Evol. 10, 1814–1819 (2019).

    Article 

    Google Scholar 

  • 46.

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).

    Article 

    Google Scholar 

  • 47.

    Nøttestad, L., Giske, J., Holst, J. C. & Huse, G. A length-based hypothesis for feeding migrations in pelagic fish. Can. J. Fish. Aquat. Sci. 56, 26–34 (1999).

    Article 

    Google Scholar 

  • 48.

    Roff, D. A. The evolution of migration and some life history parameters in marine fishes. Environ. Biol. Fishes 22, 133–146 (1988).

    Article 

    Google Scholar 

  • 49.

    Alder, J., Campbell, B., Karpouzi, V., Kaschner, K. & Pauly, D. Forage fish: from ecosystems to markets. Annu. Rev. Environ. Resour. 33, 153–166 (2008).

    Article 

    Google Scholar 

  • 50.

    Houston, A. I. & McNamara, J. M. Models of Adaptive Behaviour: An Approach Based on State (Cambridge University Press, 1999).

  • 51.

    Clark, C. W. & Mangel, M. Dynamic State Variable Models in Ecology (Oxford University Press, 2000).

  • 52.

    Hoegh-Guldberg, O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Barros, V. R. et al) 1655 (Cambridge Univ. Press, 2014).

  • 53.

    Seidov, D. Greenland–Iceland–Norwegian Seas Regional Climatology version 2 (Regional 497 Climatology Team, NOAA/NCEI, 2018).

  • 54.

    Drange, H. & Simonsen, K. Formulation of Air–Sea Fluxes in the ESOP2 Version of MICOM (1996).


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic