in

Priority list of biodiversity metrics to observe from space

  • 1.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  • 2.

    Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016).

    Article 

    Google Scholar 

  • 3.

    What are EBVs? GEO BON https://geobon.org/ebvs/what-are-ebvs/ (2020).

  • 4.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).

    Article 

    Google Scholar 

  • 7.

    Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).

    Article 

    Google Scholar 

  • 8.

    Lausch, A. et al. Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches. Remote Sens. 10, 1120 (2018).

    Article 

    Google Scholar 

  • 9.

    Barga, R., Gannon, D. & Reed, D. The client and the cloud democratizing research computing. IEEE Internet Comput. 15, 72–75 (2011).

    Article 

    Google Scholar 

  • 10.

    Muller-Karger, F. E. et al. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecol. Appl. 28, 749–760 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).

    Article 

    Google Scholar 

  • 12.

    Geijzendorffer, I. R. et al. Bridging the gap between biodiversity data and policy reporting needs: an essential biodiversity variables perspective. J. Appl. Ecol. 53, 1341–1350 (2016).

    Article 

    Google Scholar 

  • 13.

    Rohde, S., Hostmann, M., Peter, A. & Ewald, K. C. Room for rivers: an integrative search strategy for floodplain restoration. Landsc. Urban Plan. 78, 50–70 (2006).

    Article 

    Google Scholar 

  • 14.

    Belward, A. The Global Observing System for Climate: Implementation Needs Report No. GCOS-200 (Global Climate Observing System, 2016).

  • 15.

    Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95, 1431–1443 (2014).

    Article 

    Google Scholar 

  • 16.

    Wu, J. G. Effects of changing scale on landscape pattern analysis: scaling relations. Landsc. Ecol. 19, 125–138 (2004).

    Article 

    Google Scholar 

  • 17.

    Lake, P. S. Disturbance, patchiness, and diversity in streams. J. N. Am. Benthol. Soc. 19, 573–592 (2000).

    Article 

    Google Scholar 

  • 18.

    Graves, S. J. et al. Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data. Remote Sens. 8, 161 (2016).

    Article 

    Google Scholar 

  • 19.

    Schlerf, M., Atzberger, C. & Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 95, 177–194 (2005).

    Article 

    Google Scholar 

  • 20.

    Xue, Y. F., Wang, T. J. & Skidmore, A. K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 9, 878 (2017).

    Article 

    Google Scholar 

  • 21.

    Zhao, M. S., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).

    Article 

    Google Scholar 

  • 22.

    Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).

    Article 

    Google Scholar 

  • 23.

    Curran, P. J., Dungan, J. L. & Peterson, D. L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies. Remote Sens. Environ. 76, 349–359 (2001).

    Article 

    Google Scholar 

  • 24.

    Homolova, L., Maenovsky, Z., Clevers, J., Garcia-Santos, G. & Schaeprnan, M. E. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013).

    Article 

    Google Scholar 

  • 25.

    Khosravipour, A., Skidmore, A. K. & Isenburg, M. Generating spike-free digital surface models using LiDAR raw point clouds: a new approach for forestry applications. Int. J. Appl. Earth Obs. Geoinf. 52, 104–114 (2016).

    Article 

    Google Scholar 

  • 26.

    Verger, A. & Descals, A. Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)—300 m Version 1; Algorithm Theoretical Basis Document (ATBD), Issue 1.00 (Framework Service Contract No. 199494-JRC) (Copernicus Global Land Operations CGLOPS-1, 2020).

  • 27.

    Copernicus Global Land Service: FAPAR Copernicus https://land.copernicus.eu/global/about (2020).

  • 28.

    Schmidt, K. S. et al. Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogramm. Eng. Remote Sens. 70, 703–715 (2004).

    Article 

    Google Scholar 

  • 29.

    Arvor, D., Durieux, L., Andres, S. & Laporte, M. A. Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 82, 125–137 (2013).

    Article 

    Google Scholar 

  • 30.

    Lucas, R., Rowlands, A., Brown, A., Keyworth, S. & Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 62, 165–185 (2007).

    Article 

    Google Scholar 

  • 31.

    Skidmore, A. K. An expert system classifies eucalypt forest types using Landsat thematic mapper data and a digital terrain model. Photogramm. Eng. Remote Sens. 55, 1449–1464 (1989).

    Google Scholar 

  • 32.

    Tuanmu, M. N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).

    Article 

    Google Scholar 

  • 33.

    Lausch, A. et al. Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol. Model. 295, 31–41 (2015).

    Article 

    Google Scholar 

  • 34.

    Buchhorn, M. et al. Copernicus global land cover layers—Collection 2. Remote Sens. 12, 1044 (2020).

    Article 

    Google Scholar 

  • 35.

    Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).

    Article 

    Google Scholar 

  • 36.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Pekel, J., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Ye, H. et al. Improving remote sensing-based net primary production estimation in the grazed land with defoliation formulation model. J. Mt. Sci. 16, 323–336 (2019).

    Article 

    Google Scholar 

  • 39.

    Curran, P. J. & Steele, C. M. MERIS: the re-branding of an ocean sensor. Int. J. Remote Sens. 26, 1781–1798 (2005).

    Article 

    Google Scholar 

  • 40.

    Garrigues, S., Allard, D., Baret, F. & Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 105, 286–298 (2006).

    Article 

    Google Scholar 

  • 41.

    Wu, S. B. et al. Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations. ISPRS J. Photogramm. Remote Sens. 171, 36–48 (2021).

    Article 

    Google Scholar 

  • 42.

    Salcedo-Sanz, S. et al. Machine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sources. Inf. Fusion 63, 256–272 (2020).

    Article 

    Google Scholar 

  • 43.

    Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Healy, C., Gotelli, N. J. & Potvin, C. Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. J. Ecol. 96, 903–913 (2008).

    Article 

    Google Scholar 

  • 45.

    Richards, J. A., Woodgate, P. W. & Skidmore, A. K. An explanation of enhanced radar backscattering from flooded forests. Int. J. Remote Sens. 8, 1093–1100 (1987).

    Article 

    Google Scholar 

  • 46.

    Morsdorf, F. et al. in Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 83–104 (Springer International, 2020).

  • 47.

    Gratani, L. & Bombelli, A. Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus. Environ. Exp. Bot. 43, 141–153 (2000).

    Article 

    Google Scholar 

  • 48.

    Kitayama, K. & Aiba, S. I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J. Ecol. 90, 37–51 (2002).

    Article 

    Google Scholar 

  • 49.

    Nagler, P. L., Glenn, E. P. & Hinojosa-Huerta, O. Synthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta, Mexico. Remote Sens. Environ. 113, 1473–1485 (2009).

    Article 

    Google Scholar 

  • 50.

    Brassard, B. W., Chen, H. Y. H., Bergeron, Y. & Pare, D. Differences in fine root productivity between mixed- and single-species stands. Funct. Ecol. 25, 238–246 (2011).

    Article 

    Google Scholar 

  • 51.

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).

    Article 

    Google Scholar 

  • 52.

    Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79, 343–377 (2009).

    Article 

    Google Scholar 

  • 53.

    Jones, M. O., Jones, L. A., Kimball, J. S. & McDonald, K. C. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).

    Article 

    Google Scholar 

  • 54.

    Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).

    Article 

    Google Scholar 

  • 55.

    Niklas, K. J. et al. ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proc. Natl Acad. Sci. USA 104, 8891–8896 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).

    Article 

    Google Scholar 

  • 57.

    Bai, Y. F. et al. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 49, 1204–1215 (2012).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Schmeller, D. S. et al. An operational definition of essential biodiversity variables. Biodivers. Conserv. 26, 2967–2972 (2017).

    Article 

    Google Scholar 

  • 59.

    Potter, C. et al. Recent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite record. Ecosystems 8, 808–824 (2005).

    Article 

    Google Scholar 

  • 60.

    Roy, D. P., Boschetti, L., Justice, C. O. & Ju, J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–3707 (2008).

    Article 

    Google Scholar 

  • 61.

    Russell-Smith, J., Ryan, P. G. & Durieu, R. A LANDSAT MSS-derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: seasonal extent, frequency and patchiness. J. Appl. Ecol. 34, 748–766 (1997).

    Article 

    Google Scholar 

  • 62.

    Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Nidumolu, U. B., De Bie, C., Van Keulen, H. & Skidmore, A. K. Enhancement of area-specific land-use objectives for land development. Land Degrad. Dev. 15, 513–525 (2004).

    Article 

    Google Scholar 

  • 64.

    Chen, F. et al. Fast automatic airport detection in remote sensing images using convolutional neural networks. Remote Sens. 10, 443 (2018).

    Article 

    Google Scholar 

  • 65.

    Weng, Q. H. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sens. Environ. 117, 34–49 (2012).

    Article 

    Google Scholar 

  • 66.

    Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A. & Davis, C. H. Training deep convolutional neural networks for land-cover classification of high-resolution imagery. IEEE Geosci. Remote Sens. Lett. 14, 549–553 (2017).

    Article 

    Google Scholar 

  • 67.

    Skidmore, A. K., Turner, B. J., Brinkhof, W. & Knowles, E. Performance of a neural network: mapping forests using GIS and remotely sensed data. Photogramm. Eng. Remote Sens. 63, 501–514 (1997).

    Google Scholar 

  • 68.

    Joshi, C. et al. Indirect remote sensing of a cryptic forest understorey invasive species. For. Ecol. Manag. 225, 245–256 (2006).

    Article 

    Google Scholar 

  • 69.

    Defries, R. S. et al. Mapping the land surface for global atmosphere–biosphere models—toward continuous distributions of vegetation’s functional properties. J. Geophys. Res. Atmos. 100, 20867–20882 (1995).

    Article 

    Google Scholar 

  • 70.

    Cunliffe, A. M., Brazier, R. E. & Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 183, 129–143 (2016).

    Article 

    Google Scholar 

  • 71.

    Asner, G. P., Wessman, C. A. & Schimel, D. S. Heterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modeling. Ecol. Appl. 8, 1022–1036 (1998).

    Article 

    Google Scholar 

  • 72.

    Peterseil, J. et al. Evaluating the ecological sustainability of Austrian agricultural landscapes—the SINUS approach. Land Use Policy 21, 307–320 (2004).

    Article 

    Google Scholar 

  • 73.

    Saura, S., Bodin, O. & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).

    Article 

    Google Scholar 

  • 74.

    De Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E. & Dent, D. L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 115, 692–702 (2011).

    Article 

    Google Scholar 

  • 75.

    Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Baldeck, C. A. & Asner, G. P. Improving remote species identification through efficient training data collection. Remote Sens. 6, 2682–2698 (2014).

    Article 

    Google Scholar 

  • 77.

    Fassnacht, F. E. et al. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 186, 64–87 (2016).

    Article 

    Google Scholar 

  • 78.

    Lausch, A. et al. Linking earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016).

    Article 

    Google Scholar 

  • 79.

    Shi, Y. F., Wang, T. J., Skidmore, A. K. & Heurich, M. Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote Sens. 137, 163–174 (2018).

    Article 

    Google Scholar 

  • 80.

    Wilkes, P. et al. Using discrete-return airborne laser scanning to quantify number of canopy strata across diverse forest types. Methods Ecol. Evol. 7, 700–712 (2016).

    Article 

    Google Scholar 

  • 81.

    Hyyppa, J. et al. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 29, 1339–1366 (2008).

    Article 

    Google Scholar 

  • 82.

    Transon, J., d’Andrimont, R., Maugnard, A. & Defourny, P. Survey of hyperspectral earth observation applications from space in the Sentinel-2 context. Remote Sens. 10, 157 (2018).

    Article 

    Google Scholar 

  • 83.

    Guanter, L. et al. The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens. 7, 8830–8857 (2015).

    Article 

    Google Scholar 

  • 84.

    Qi, W. L. & Dubayah, R. O. Combining Tandem-X InSAR and simulated GEDI LiDAR observations for forest structure mapping. Remote Sens. Environ. 187, 253–266 (2016).

    Article 

    Google Scholar 

  • 85.

    Ramoelo, A., Cho, M., Mathieu, R. & Skidmore, A. K. Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote Sens. 9, 094096 (2015).

    Article 

    Google Scholar 

  • 86.

    Madonsela, S. et al. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species. Int. J. Appl. Earth Obs. Geoinf. 58, 65–73 (2017).

    Article 

    Google Scholar 

  • 87.

    Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017).

    Article 

    Google Scholar 

  • 88.

    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 89.

    Meireles, J. E. et al. Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytol. 228, 485–493 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    McManus, K. M. et al. Phylogenetic structure of foliar spectral traits in tropical forest canopies. Remote Sens. 8, 196 (2016).

    Article 

    Google Scholar 

  • 91.

    Urbano, F. et al. Wildlife tracking data management: a new vision. Phil. Trans. R. Soc. B Biol. Sci. 365, 2177–2185 (2010).

    Article 

    Google Scholar 

  • 92.

    Cubaynes, H. C., Fretwell, P. T., Bamford, C., Gerrish, L. & Jackson, J. A. Whales from space: four mysticete species described using new VHR satellite imagery. Mar. Mammal. Sci. 35, 466–491 (2019).

    Article 

    Google Scholar 

  • 93.

    Yang, Z. et al. Spotting East African mammals in open savannah from space. PLoS ONE 9, e115989 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 94.

    Neumann, W. et al. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov. Ecol. 3, 8 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Weiss, J. R., Smythe, W. D. & Lu, W. W. Science Traceability. In Proc. IEEE Aerospace Conference 292–299 (IEEE, 2005).

  • 96.

    National Academies of Sciences, Engineering, and Medicine Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (National Academies Press, 2018).

  • 97.

    Verstraete, M. M., Diner, D. J. & Bezy, J. L. Planning for a spaceborne Earth observation mission: from user expectations to measurement requirements. Environ. Sci. Policy 54, 419–427 (2015).

    Article 

    Google Scholar 

  • 98.

    Skidmore, A. K. et al. Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Masek, J. G. et al. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 112, 2914–2926 (2008).

    Article 

    Google Scholar 

  • 100.

    O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).

  • 101.

    Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).

    Article 

    Google Scholar 

  • 103.

    Walters, M. et al. Essential Biodiversity Variables UNEP/CBD/SBSTTA/17/INF/7 (Convention on Biological Diversity, 2013).

  • 104.

    Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Indic. 60, 947–962 (2016).

    Article 

    Google Scholar 

  • 106.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 107.

    Gibert, J. P., Dell, A. I., DeLong, J. P. & Pawar, S. Scaling-up trait variation from individuals to ecosystems. Adv. Ecol. Res. 52, 1–17 (2015).

    Article 

    Google Scholar 

  • 108.

    Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).

    Article 

    Google Scholar 

  • 109.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article 

    Google Scholar 

  • 110.

    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 111.

    Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 112.

    Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 113.

    Schmeller, D. et al. Building capacity in biodiversity monitoring at the global scale. Biodivers. Conserv. 26, 2765–2790 (2017).

    Article 

    Google Scholar 

  • 114.

    Belward, A. S. & Skoien, J. O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 103, 115–128 (2015).

    Article 

    Google Scholar 

  • 115.

    Vogel, D. Private global business regulation. Annu. Rev. Polit. Sci. 11, 261–282 (2008).

    Article 

    Google Scholar 

  • 116.

    Tranquilli, S. et al. Lack of conservation effort rapidly increases African great ape extinction risk. Conserv. Lett. 5, 48–55 (2012).

    Article 

    Google Scholar 

  • 117.

    Buchanan, G. M. et al. Free satellite data key to conservation. Science 361, 139–140 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).

    Article 

    Google Scholar 

  • 119.

    Wulder, M. A. et al. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 170, 62–76 (2015).

    Article 

    Google Scholar 

  • 120.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • 121.

    Czyz, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 122.

    Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 123.

    Cavender-Bares, J. et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity. Remote Sens. 8, 221 (2016).

    Article 

    Google Scholar 

  • 124.

    Surface Biology and Geology (SBG) NASA Science https://science.nasa.gov/earth-science/decadal-sbg (2020).


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic