in

Multiple DNA marker-assisted diversity analysis of Indian mango (Mangifera indica L.) populations

  • 1.

    Purseglove, J. W. Mangoes west of India. Acta Hortic. 24, 107–174 (1972).

    Google Scholar 

  • 2.

    Mukherjee, S. K. Origin, distribution and phylogenetic affinities of the species of Mangifera indica L. Bot. J. Linn. Soc. 55, 65–83 (1953).

    Article 

    Google Scholar 

  • 3.

    Kostermans, A. J. G. H. & Bompard, J. M. The Mangoes: Their Botany, Nomenclature (Horticulture and Utilization. IBPGR Academic Press, 1993).

    Google Scholar 

  • 4.

    Ravishankar, K. V., Lalitha, A., Anand, L. & Dinesh, M. R. Assessment of genetic relatedness among mango cultivars of India using RAPD markers. J. Hortic. Sci. Biotech. 75, 198–201 (2000).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Karihaloo, J. L., Dwivedi, Y. K., Archak, S. & Gaikwad, A. B. Analysis of genetic diversity of Indian mango cultivars using RAPD markers. J. Hortic. Sci. Biotech. 78, 285–289 (2003).

    CAS 
    Article 

    Google Scholar 

  • 6.

    APEDA, The Agricultural and Processed Food Products Export Development Authority http://apeda.gov.in/apedawebsite/sixheadproduct/FFV.htm (2017).

  • 7.

    National Horticultural Board, Ministry of Agriculture and Farmers Welfare Government of India 85, Institutional Area, Sector-18, Gurugram 122015 (Haryana), India http://www.nhb.gov.in (2016-17).

  • 8.

    Jena, R.C. DNA fingerprinting of some promising Indian genotypes and hybrids of mango (Mangifera indica L.). PhD Thesis (pp 1–422). Utkal University, India (2019).

  • 9.

    Yadav, I. S. & Rajan, S. Genetic resources of mango. Adv. Hortic. 1, 77–93 (1993).

    Google Scholar 

  • 10.

    Zhang, J. et al. Potential of start codon targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus accessions. Molecules 20, 5987–6001 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Harisaranraj, R., Prasitha, R., Saravana Babu, S. & Suresh, K. Analysis of inter-species relationships of Ocimum species using RAPD markers. Ethnobotanical Leaflets. 12, 609–613 (2008).

    Google Scholar 

  • 12.

    Liu, H. et al. Genetic diversity and population structure of the endangered plant Salix taishanensis based on CDDP markers. Glob Ecol. Conserv. 24, (2020).

  • 13.

    Mahar, K. S. et al. Estimation of genetic variability and population structure in Sapindus trifoliatus L., using DNA fingerprinting methods. Trees 27, 85–96 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Kalpana, D. et al. Assessment of genetic diversity among varieties of mulberry using RAPD and ISSR fingerprinting. Sci. Hortic. 134, 79–87 (2012).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Medhi, K. et al. High gene flow and genetic diversity in three economically important Zanthoxylum Spp. of Upper Brahmaputra Valley Zone of NE India using molecular markers. Meta Gene. 2, 706–721 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Wunsch, A. & Hormaza, J. I. Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica 125, 59–67 (2002).

    Article 

    Google Scholar 

  • 17.

    Flint-Garcia, S. A. et al. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 44, 1054–1064 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Breton, C., Pinatel, C., Medail, F., Bonhomme, F. & Berville, A. Comparison between classical and Bayesian methods to investigate the history of olive cultivars using SSR-polymorphisms. Plant Sci. 175, 524–532 (2008).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Pillon, Y., Qamaruz-Zaman, F., Fay, M. F., Hendoux, F. & Piquot, Y. Genetic diversity and ecological differentiation in the endangered fen orchid (Liparis loeselii). Conserv. Genet. 8, 177–184 (2007).

    Article 

    Google Scholar 

  • 20.

    Mahar, K. S., Rana, T. S., Ranade, S. A. & Meena, B. Genetic variability and population structure in Sapindus emarginatus Vahl from India. Gene 485, 32–39 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Izawa, T., Kawahara, T. & Takahashi, H. Genetic diversity of an endangered plant, Cypripedium macranthosvar. rebunense (Orchidaceae): Background genetic research for future conservation. Conserv. Genet. 8, 1369–1376 (2007).

    Article 

    Google Scholar 

  • 22.

    Neel, M. C. & Ellstrand, N. C. Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae). Conserv. Genet. 4, 337–352 (2003).

    CAS 
    Article 

    Google Scholar 

  • 23.

    George, S., Sharma, J. & Yadon, V. L. Genetic diversity of the endangered and narrow endemic Piperia yadonii (Orchidaceae) assessed with ISSR polymorphisms. Am. J. Bot. 96, 2022–2030 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Marsjan, P. & Oldenbroek, J.K. Molecular markers, a tool for exploring genetic diversity. The State of the World’s Animal Genetic Resources for Food and Agriculture, (pp. 359–379). FAO Research report, Rome (2007).

  • 25.

    Kumar, P., Gupta, V. K., Misra, A. K., Modi, D. R. & Pandey, B. K. Potential of molecular markers in plant biotechnology. Plant Omics. 2, 141–162 (2009).

    CAS 

    Google Scholar 

  • 26.

    Agarwal, M., Shrivastava, N. & Padh, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27, 617–631 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Li, M., Zhao, Z. & Miao, X. J. Genetic variability of wild apricot (Prunus Armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genet. Resour. Crop Evol. 60, 2293–2302 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Abdin, M. Z. et al. Population structure and genetic diversity in bottle gourd [Lagenaria siceraria (Mol.) Standl.] germplasm from India assessed by ISSR marker. Plant Syst. Evol. 300, 767–773 (2014).

    Article 

    Google Scholar 

  • 29.

    Fazeli, S., Sheidai, M., Farahani, F. & Noormohammadi, Z. Looking for genetic diversity in Iranian apple cultivars (Malus × domestica Borkh.). J Sci. 27, 205–221 (2016).

    Google Scholar 

  • 30.

    Qian, X., Wang, C. & Tian, M. Genetic diversity and population differentiation of Calanthe tsoongiana, a rare and endemic orchid in China. Int J Mol Sci. 14, 20399–20413 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Singh, N. et al. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS ONE 8(12), e84136. https://doi.org/10.1371/journal.pone.0084136 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Jena, R. C., Agarwal, K., Ghosh, T. S. & Chand, P. K. Population structuring of selected mungbean landraces of the Odisha State of India via DNA marker-based genetic diversity analysis. Agric. Gene. 3, 67–86 (2017).

    Article 

    Google Scholar 

  • 33.

    Dias, A. et al. Portuguese Pinus nigra JF Arnold populations: genetic diversity, structure and relationships inferred by SSR markers. Ann. For. Sci. 77, 1–15 (2020).

    Google Scholar 

  • 34.

    Wu, Q., Zang, F., Ma, Y., Zheng, Y. & Zang, D. Analysis of genetic diversity and population structure in endangered Populus wulianensis based on 18 newly developed EST-SSR markers. Glob. Ecol. Conserv. 24, e01329 (2020).

    Article 

    Google Scholar 

  • 35.

    Surapaneni, M. et al. Population structure and genetic analysis of different utility types of mango (Mangifera indica L.) germplasm of Andhra Pradesh state of India using microsatellite markers. Plant Syst. Evol. 299, 1215–1229 (2013).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Yilmaz, K. U., Paydas-Kargi, S., Dogan, Y. & Kafkas, S. Genetic diversity analysis based on ISSR, RAPD and SSR among Turkish apricot germplasms in Iran Caucasian eco-geographical group. Sci. Hortic. 138, 138–143 (2012).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Patel, H. K., Fougat, R. S., Kumar, S., Mistry, J. G. & Kumar, M. Detection of genetic variation in Ocimum species using RAPD and ISSR markers. 3. Biotech 5, 697–707 (2015).

    Google Scholar 

  • 38.

    Desai, P. et al. Comparative assessment of genetic diversity among Indian bamboo genotypes using RAPD and ISSR markers. Mol. Biol. Rep. 42, 1265–1273 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Luo, C. et al. Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochem. Syst. Ecol. 39, 676–684 (2011).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Gajera, H. P., Tomar, R. S., Patel, S. V., Viradia, R. R. & Golakiya, B. A. Comparison of RAPD and ISSR markers for genetic diversity analysis among different endangered Mangifera indica genotypes of Indian Gir forest region. J. Plant Biochem. Biotech. 20, 217–223 (2011).

    Article 

    Google Scholar 

  • 41.

    Hamrick, J. L. & Godt, M. J. W. Conservation genetics of endemic plant species. In Avise, J. C., & J. L. Hamrick (Eds.), Conservation genetics: case histories from nature. (pp. 281–30). Chapman and Hall, New York (1996).

  • 42.

    Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R, Pang X (2014). High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLOS ONE 9:e87381

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Xie, W. G., Zhang, X. Q., Ma, X., Huang, L. K. & Zeng, B. Genetic variation of Dactylis glomerata germplasm from Southwest China detected by SSR markers. Acta Pratacult. 18, 138–146 (2009).

    Google Scholar 

  • 44.

    Yan, X. B., Guo, Y. X., Zhou, H. & Wang, K. Analysis of geographical conditions affected on genetic variation and relationship among populations of Elymus. J. Plant Res. Environ. 15, 17–24 (2006).

    Google Scholar 

  • 45.

    Hamrick, J. L., Godt, M. J. W. & Sherman-Broyles, S. L. Factors influencing levels of genetic diversity in plant species. New For. 6, 95–124 (1992).

    Article 

    Google Scholar 

  • 46.

    Li, M., Zhao, Z. & Miao, X. Genetic diversity and relationships of apricot cultivars in North China revealed by ISSR and SRAP markers. Sci. Hortic. 173, 20–28 (2014).

    Article 

    Google Scholar 

  • 47.

    Kubik, C., Honig, J., Meyer, W. A. & Stacy, A. B. Genetic diversity of creeping bent-grass cultivars using SSR markers. Int. Turfgrass Soc. Res. J. 11, 533–547 (2009).

    Google Scholar 

  • 48.

    Gupta, P. K. & Roy, J. K. Molecular markers in crop improvement: Present status and future needs in India. Plant Cell Tiss. Org. 70, 229–234 (2002).

    Article 

    Google Scholar 

  • 49.

    Sivaprakash, K. R., Prasanth, S. R., Mohanty, B. P. & Parida, A. Genetic diversity of black gram landraces as evaluated by AFLP markers. Curr. Sci. 86, 1411–1415 (2004).

    Google Scholar 

  • 50.

    Noormohammadi, Z. et al. Genetic Variation among Iranian Pomegranates (Punica granatum L.) using RAPD, ISSR and SSR Markers. Aust. J. Crop Sci. 6, 268–275 (2012).

    CAS 

    Google Scholar 

  • 51.

    Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T. & Smith, W. A. Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7, 464–474 (1998).

    Article 

    Google Scholar 

  • 52.

    Zong, M. et al. Genetic diversity in geographic differentiation in the threatened species Dysosma pleiantha in China as revealed by ISSR analysis. Biochem. Genet. 46, 180–196 (2008).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Wright, S. Evolution and the Genetics of Population (University of Chicago Press, 1978).

    Google Scholar 

  • 54.

    Slatin, M. Gene flow and geographic structure of natural populations. Science 236, 787–792 (1987).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Kumar, A., Mishra, P., Singh, S. C. & Sundaresan, V. Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia adhatoda L., a medicinal plant. Plant Syst. Evol. 300, 1409–1420 (2014).

    Article 

    Google Scholar 

  • 56.

    Slatkin, M. & Barton, N. H. A comparison of three indirect methods for estimating the average level of gene flow. Evolution 43, 1349–1368 (1989).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Kouam, E. B., Pasquet, R. S., Elteraifi, I. & Muluvi, G. M. Genetic diversity and population structure of Vigna unguiculata ssp. unguiculata var. spontanea in Sudan. J. Res. Biol. 8, 643–652 (2011).

    Google Scholar 

  • 58.

    Xing, C., Tian, Y. & Meng, F. Evaluation of genetic diversity in Amygdalus mira (Koehne) Ricker using SSR and ISSR markers. Plant Syst. Evol. 301, 1055–1064 (2015).

    Article 

    Google Scholar 

  • 59.

    Ikegami, H., Nogata, H., Hirashima, K., Awamura, M. & Nakahara, T. Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genet. Resour. Crop Evol. 56, 201–209 (2009).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Takrouni, M. M. & Boussaid, M. Genetic diversity and population’s structure in Tunisian strawberry tree (Arbutus undo L.). Sci. Hortic. 126, 330–337 (2010).

    Article 

    Google Scholar 

  • 61.

    Arya, L., Narayanan, R. K., Verma, M., Singh, A. K. & Gupta, V. Genetic diversity and population structure analyses of Morinda tomentosa Heyne, with neutral and gene based markers. Genet. Resour. Crop Evol. 61, 1469–1479 (2014).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Hamrick, J. L., Godt, M. J. W., Murawski, D. A., & Loveless, M. D. Correlations between species traits and allozyme diversity: Implications for conservation biology. In Falk, D.A.S., & K. E. Holsinger (Eds.), Genetics and conservation of rare plants. (pp. 75–86), Oxford University Press, Oxford (1991).

  • 63.

    Loveless, M. D. & Hamrick, J. L. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Evol. Syst. 15, 65–96 (1984).

    Article 

    Google Scholar 

  • 64.

    Schoen, D. J. & Brown, A. H. D. Intraspecific variation in population gene diversity and effective population size correlates with mating systems in plants. Proc. Natl. Acad. Sci. USA 88, 4494–4497 (1991).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Yan, J. J., Bai, S. Q., Zhang, X. Q. & Chang, D. Genetic diversity of native Elymus sibiricus populations in the Southeastern Margin of Qinghai-Tibetan Plateau as detected by SRAP and SSR marker. Acta Pratacult. Sin. 19, 122–134 (2010).

    Google Scholar 

  • 66.

    Aros, D., Meneses, C. & Infante, R. Genetic diversity of wild species and cultivated varieties of alstroemeria estimated through morphological descriptors and RAPD markers. Sci. Hortic. 108, 86–90 (2006).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Souframanien, J. & Gopalakrishna, T. A comparative analysis of genetic diversity in black gram genotypes using RAPD and ISSR markers. Theor. Appl. Genet. 109, 1687–1693 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Gorji, A. M., Poczai, P., Polgar, Z. & Taller, J. Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am. J. Potato Res. 88, 226–237 (2011).

    Article 

    Google Scholar 

  • 69.

    Saxena, S. et al. Analysis of genetic diversity among papaya cultivars using single primer amplification reaction (SPAR) methods. J. Hortic. Sci. Biotech. 80, 291–296 (2005).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Murty, S. G. et al. Comparison of RAPD, ISSR and DAMD markers for genetic diversity assessment between accessions of Jatropha curcas L., and its related species. J. Agric. Sci Tech. 15, 1007–1022 (2013).

    CAS 

    Google Scholar 

  • 71.

    Ferrao, L. F. V. et al. Comparative study of different molecular markers for classifying and establishing genetic relationships in Coffea canephora. Plant. Syst. Evol. 299, 225–238 (2013).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  • 73.

    Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).

    Google Scholar 

  • 74.

    Sambrook, J., Fritsch, E. F. & Maniatis, T., Agarose gel electrophoresis of DNA and pulse field gel electrophoresis. In: Molecular Cloning: a Laboratory Manual, 3rd Edn. Cold Springer Harbor Laboratory Press, (pp. 5.1–5.86). New York, USA (1989).

  • 75.

    Zhou, Z., Bebeli, P. J., Somers, D. J. & Gustafson, J. P. Direct amplification of minisatellite-region DNA with VNTR core sequences in the genus Oryza. Theor. Appl. Genet. 95, 942–949 (1997).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Winberg, B. C., Shori, Z., Dallas, J. F., Mclntyre, C. L. & Gustafson, J. P. Characterization of minisatellite sequences from Oryza sativa. Genome 36, 978–983 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Kang, H. W., Park, D. S., Go, S. J. & Eun, M. Y. Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice. Mol. Cell. 13, 281–287 (2002).

    CAS 

    Google Scholar 

  • 78.

    Jeffreys, A. J., Wilson, V. & Thein, S. L. Hypervariable minisatellite regions in human DNA. Nature 314, 67–72 (1985).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Nakamura, Y. et al. Variable number of tandem repeats (VNTR) markers for human gene mapping. Science 235, 1616–1622 (1987).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Anderson, T. H. & Nilsson-Tillgren, T. A fungal minisatellite. Nature 386, 771 (1997).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Collard, B. C. Y. & Mackill, D. J. Start Codon Targeted (SCoT) polymorphism: a simple novel DNA marker technique for generating gene-targeted markers in plants. Plant. Mol. Biol. Rep. 27, 86–93 (2009).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Luo, C., He, X. H., Chen, H., Ou, S. J. & Gao, M. P. Analysis of diversity and relationships among mango cultivars using start codon targeted (SCoT) markers. Biochem. Syst. Ecol. 38, 1176–1184 (2010).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Singh, A. K. et al. CAAT box-derived polymorphism (CBDP): A novel promoter-targeted molecular marker for plants. J. Plant Biochem. Biotech. 23, 175–183 (2013).

    Article 
    CAS 

    Google Scholar 

  • 84.

    Schnell, R. J., Olano, C. T., Quintanilla, W. E. & Meerow, A. W. Isolation and characterization of 15 microsatellite loci from mango (Mangifera indica L.) and cross-species amplification in closely related taxa. Mol. Ecol. Notes. 5, 625–627 (2005).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Viruel, M. A., Escribano, P., Barbieri, M., Ferri, M. & Hormaza, J. I. Fingerprint, embryo type, and geographic differentiation in mango (Mangifera indica L., Anacardiaceae) with microsatellites. Mol. Breed. 15, 383–393 (2005).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Ukoskit, K. Development of microsatellite markers in mango (Mangifera indica L.) using 5’ anchored PCR. Thammasat. Int. J. Sci. Tech. 12, 1–7 (2007).

    Google Scholar 

  • 87.

    Ravishankar, K. V., Mani, B. H. R., Anand, L. & Dinesh, M. R. Development of new microsatellite markers from mango (Mangifera indica) and cross-species amplification. Am. J. Bot. 98, 96–99 (2011).

    Article 

    Google Scholar 

  • 88.

    Yeh, F.C., Yang, R.C. & Boyle, T., POPGENE Version 1.32: Microsoft Window-Based Freeware for Population Genetics Analysis, (p. 12). University of Alberta, Edmonton (1999).

  • 89.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Jaccard, P. Nouvellesrecherchessur la distribution florale. Bull. Soc. vaudoise sci. nat. 44, 223–270 (1908).

    Google Scholar 

  • 91.

    Rohlf, F.J. NTSYS pc numerical taxonomy and multivariate system, Version 2.1.Exeter Publ Ltd, Setauket, New York (1993).

  • 92.

    Sneath, P. H. A. & Sokal, R. R. Numerical taxonomy (Freeman Press, 1973).

    MATH 

    Google Scholar 

  • 93.

    Nei, M. Genetic distance between populations. Am. Nat. 106, 283–392 (1972).

    Article 

    Google Scholar 

  • 94.

    Yap, V., Nelson, R. J. WinBoot: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI, Philippines (1996).


  • Source: Ecology - nature.com

    Engineering complex communities by directed evolution

    Crowdsourcing data on road quality and excess fuel consumption