Selig, E. R., Casey, K. S. & Bruno, J. F. Temperature-driven coral decline: the role of marine protected areas. Glob. Chang. Biol. 18, 1561–1570 (2012).
Google Scholar
Mumby, P. J., Wolff, N. H., Bozec, Y. M., Chollett, I. & Halloran, P. Operationalizing the resilience of coral reefs in an era of climate change. Conserv. Lett. 7, 176–187 (2014).
Google Scholar
Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).
Google Scholar
Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).
Google Scholar
Burkepile, D. E. et al. Species-specific patterns in corallivory and spongivory among Caribbean parrotfishes. Coral Reefs 38, 417–423 (2019).
Google Scholar
Bonaldo, R., Hoey, A. & Bellwood, D. The Ecosystem Roles of Parrotfishes on Tropical Reefs. In Oceanography and Marine Biology: An Annual Review 81–132 (2014). https://doi.org/10.1201/b17143-3.
Mendes, T. C., Ferreira, C. E. L. & Clements, K. D. Discordance between diet analysis and dietary macronutrient content in four nominally herbivorous fishes from the Southwestern Atlantic. Mar. Biol. 165, 180 (2018).
Google Scholar
Vergés, A., Doropoulos, C., Malcolm, H. A., Skye, M. & Garcia-pizá, M. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. PNAS https://doi.org/10.1073/pnas.1610725113 (2016).
Google Scholar
Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Chang. 8, 499–503 (2018).
Google Scholar
Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-010419-010916 (2020).
Google Scholar
Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).
Google Scholar
Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).
Google Scholar
Veilleux, H. D. & Donelson, J. M. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. Conserv. Physiol. 6, 1–12 (2018).
Google Scholar
Iftikar, F. I., MacDonald, J. R., Baker, D. W., Renshaw, G. M. C. & Hickey, A. J. R. Could thermal sensitivity of mitochondria determine species distribution in a changing climate?. J. Exp. Biol. 217, 2348–2357 (2014).
Google Scholar
Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Chang. 2, 30–32 (2012).
Google Scholar
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
Google Scholar
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
Google Scholar
Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).
Google Scholar
Freer, J. J., Partridge, J. C., Tarling, G. A., Collins, M. A. & Genner, M. J. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty. Mar. Biol. 165, 7 (2018).
Google Scholar
Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
Diversity, C. B. Target 11: Protected areas increased and improved. Quick Guides for the Aichi Biodiversity Targets (2011).
Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
Google Scholar
McLeod, I. M. et al. Latitudinal variation in larval development of coral reef fishes: implications of a warming ocean. Mar. Ecol. Prog. Ser. 521, 129–141 (2015).
Google Scholar
Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15 (2006).
Google Scholar
Sponaugle, S., Boulay, J. & Rankin, T. Growth- and size-selective mortality in pelagic larvae of a common reef fish. Aquat. Biol. 13, 263–273 (2011).
Google Scholar
Barneche, D. R., Jahn, M. & Seebacher, F. Warming increases the cost of growth in a model vertebrate. Funct. Ecol. https://doi.org/10.1111/1365-2435.13348 (2019).
Google Scholar
Munday, P. L., Kingsford, M. J., O’Callaghan, M. & Donelson, J. M. Elevated temperature restricts growth potential of the coral reef fish Acanthochromis polyacanthus. Coral Reefs 27, 927–931 (2008).
Google Scholar
Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395 (2009).
Google Scholar
Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6, 83–88 (2016).
Google Scholar
Twiname, S. et al. A cross-scale framework to support a mechanistic understanding and modelling of marine climate-driven species redistribution, from individuals to communities. Ecography (Cop). https://doi.org/10.1111/ecog.04996 (2020).
Google Scholar
Donelson, J. M., McCormick, M. I., Booth, D. J. & Munday, P. L. Reproductive acclimation to increased water temperature in a tropical reef fish. PLoS ONE 9, e97223 (2014).
Google Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).
Google Scholar
Habary, A., Johansen, J. L., Nay, T. J., Steffensen, J. F. & Rummer, J. L. Adapt, move or die—how will tropical coral reef fishes cope with ocean warming?. Glob. Chang. Biol. 23, 566–577 (2017).
Google Scholar
Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Chang. 10, 576–581 (2020).
Google Scholar
Gerber, L. R., Mancha-Cisneros, M. D. M., O’Connor, M. I. & Selig, E. R. Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere 5, art33 (2014).
Google Scholar
Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404 (2005).
Google Scholar
Berenshtein, I. et al. Biophysical simulations support schooling behavior of fish larvae throughout ontogeny. Front. Mar. Sci. 5, 1–12 (2018).
Google Scholar
IOCCG. Remote sensing in fisheries and aquaculture. and Aquaculture. , IOCCG,. http://www.ioccg.org/reports/report8.pdf (2009).
Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).
Google Scholar
Donlon, C. J. et al. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012).
Google Scholar
Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: a new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).
Google Scholar
Franco, B. C. et al. Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review. Clim. Change https://doi.org/10.1007/s10584-020-02783-6 (2020).
Google Scholar
Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Ocean 121, 4928–4945 (2016).
Google Scholar
Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).
Pontes, G. M. et al. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes. Environ. Res. Lett. 11, 094013 (2016).
Google Scholar
Donelson, J. M., Munday, P. L., Mccormick, M. I. & Nilsson, G. E. Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob. Chang. Biol. 17, 1712–1719 (2011).
Google Scholar
Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Softw. 23, 1210–1214 (2008).
Google Scholar
Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965 (2018).
Google Scholar
Giglio, V. J. et al. Large and remote marine protected areas in the South Atlantic Ocean are flawed and raise concerns: Comments on Soares and Lucas (2018). Mar. Policy 96, 13–17 (2018).
Google Scholar
Garciá Molinos, J., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1–9 (2017).
Google Scholar
Inagaki, K. Y., Pennino, M. G., Floeter, S. R., Hay, M. E. & Longo, G. O. Trophic interactions will expand geographically but be less intense as oceans warm. Glob. Chang. Biol. 26, 6805–6812 (2020).
Google Scholar
Brierley, C. & Wainer, I. Inter-annual variability in the tropical Atlantic from the Last Glacial Maximum into future climate projections simulated by CMIP5/PMIP3. Clim. Past 14, 1377–1390 (2018).
Google Scholar
Andrello, M., Mouillot, D., Somot, S., Thuiller, W. & Manel, S. Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas. Divers. Distrib. 21, 139–150 (2015).
Google Scholar
Carr, M. H. et al. The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 6–29 (2017).
Google Scholar
Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).
Google Scholar
Morais, R. A., Ferreira, C. E. L. & Floeter, S. R. Spatial patterns of fish standing biomass across Brazilian reefs. J. Fish Biol. 91, 1642–1667 (2017).
Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian province. PLoS ONE 13, 1–15 (2018).
Toste, R., Assad, L. P. D. F. & Landau, L. Downscaling of the global HadGEM2-ES results to model the future and present-day ocean conditions of the southeastern Brazilian continental shelf. Clim. Dyn. 0, 1–17 (2017).
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century : projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
Google Scholar
Fairall, C. W. et al. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. Ocean 101, 1295–1308 (1996).
Google Scholar
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A. & Edson, J. B. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16, 571–591 (2003).
Google Scholar
Lima, L. N., Pezzi, L. P., Penny, S. G. & Tanajura, C. A. S. An investigation of ocean model uncertainties through ensemble forecast experiments in the Southwest Atlantic Ocean. J. Geophys. Res. Ocean. 124, 432–452 (2019).
Google Scholar
Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3, 1–20 (2001).
Google Scholar
Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363 (1994).
Google Scholar
Foltz, G. R., Schmid, C. & Lumpkin, R. An enhanced PIRATA dataset for tropical Atlantic Ocean-atmosphere research. J. Clim. 31, 1499–1524 (2018).
Google Scholar
Booth, D. J., Beretta, G. A., Brown, L. & Figueira, W. F. Predicting success of range-expanding coral reef fish in temperate habitats using temperature-abundance relationships. Front. Mar. Sci. 5, (2018).
Molina-ureña, H. Towards an Ecosystem Approach for Non-Target Reef Fishes: Habitat Uses and Population Dynamics of South Florida Parrotfishes (Perciformes: Scaridae). (Open Access Dissertations 237, 2009).
Robertson, D. R. Egg size in relation to fertilization dynamics in free-spawning tropical reef fishes. Oecologia 108, 95–104 (1996).
Google Scholar
Robertson, D. R. et al. Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes. Mol. Phylogenet. Evol. 40, 795–807 (2006).
Google Scholar
Islam, M. A. A comparative study on numerical solutions of initial value problems (IVP) for ordinary differential equations (ODE) with Euler and Runge Kutta methods. Am. J. Comput. Math. 05, 393–404 (2015).
Google Scholar
D’Agostini, A., Gherardi, D. F. M. & Pezzi, L. P. Connectivity of marine protected areas and its relation with total kinetic energy. PLoS ONE 10, 1–19 (2015).
Google Scholar
Mitarai, S., Siegel, D. A., Watson, J. R., Dong, C. & McWilliams, J. C. Quantifying connectivity in the coastal ocean with application to the Southern California Bight. J. Geophys. Res. 114, C10026 (2009).
Google Scholar
Source: Ecology - nature.com