in

Potential changes in the connectivity of marine protected areas driven by extreme ocean warming

  • 1.

    Selig, E. R., Casey, K. S. & Bruno, J. F. Temperature-driven coral decline: the role of marine protected areas. Glob. Chang. Biol. 18, 1561–1570 (2012).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Mumby, P. J., Wolff, N. H., Bozec, Y. M., Chollett, I. & Halloran, P. Operationalizing the resilience of coral reefs in an era of climate change. Conserv. Lett. 7, 176–187 (2014).

    Article 

    Google Scholar 

  • 3.

    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Burkepile, D. E. et al. Species-specific patterns in corallivory and spongivory among Caribbean parrotfishes. Coral Reefs 38, 417–423 (2019).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Bonaldo, R., Hoey, A. & Bellwood, D. The Ecosystem Roles of Parrotfishes on Tropical Reefs. In Oceanography and Marine Biology: An Annual Review 81–132 (2014). https://doi.org/10.1201/b17143-3.

  • 7.

    Mendes, T. C., Ferreira, C. E. L. & Clements, K. D. Discordance between diet analysis and dietary macronutrient content in four nominally herbivorous fishes from the Southwestern Atlantic. Mar. Biol. 165, 180 (2018).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Vergés, A., Doropoulos, C., Malcolm, H. A., Skye, M. & Garcia-pizá, M. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. PNAS https://doi.org/10.1073/pnas.1610725113 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Chang. 8, 499–503 (2018).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-010419-010916 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).

    Article 

    Google Scholar 

  • 13.

    Veilleux, H. D. & Donelson, J. M. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. Conserv. Physiol. 6, 1–12 (2018).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Iftikar, F. I., MacDonald, J. R., Baker, D. W., Renshaw, G. M. C. & Hickey, A. J. R. Could thermal sensitivity of mitochondria determine species distribution in a changing climate?. J. Exp. Biol. 217, 2348–2357 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Chang. 2, 30–32 (2012).

    ADS 
    Article 

    Google Scholar 

  • 16.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Freer, J. J., Partridge, J. C., Tarling, G. A., Collins, M. A. & Genner, M. J. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty. Mar. Biol. 165, 7 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).

    Google Scholar 

  • 21.

    Diversity, C. B. Target 11: Protected areas increased and improved. Quick Guides for the Aichi Biodiversity Targets (2011).

  • 22.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    McLeod, I. M. et al. Latitudinal variation in larval development of coral reef fishes: implications of a warming ocean. Mar. Ecol. Prog. Ser. 521, 129–141 (2015).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15 (2006).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Sponaugle, S., Boulay, J. & Rankin, T. Growth- and size-selective mortality in pelagic ­larvae of a common reef fish. Aquat. Biol. 13, 263–273 (2011).

    Article 

    Google Scholar 

  • 26.

    Barneche, D. R., Jahn, M. & Seebacher, F. Warming increases the cost of growth in a model vertebrate. Funct. Ecol. https://doi.org/10.1111/1365-2435.13348 (2019).

    Article 

    Google Scholar 

  • 27.

    Munday, P. L., Kingsford, M. J., O’Callaghan, M. & Donelson, J. M. Elevated temperature restricts growth potential of the coral reef fish Acanthochromis polyacanthus. Coral Reefs 27, 927–931 (2008).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395 (2009).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6, 83–88 (2016).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Twiname, S. et al. A cross-scale framework to support a mechanistic understanding and modelling of marine climate-driven species redistribution, from individuals to communities. Ecography (Cop). https://doi.org/10.1111/ecog.04996 (2020).

    Article 

    Google Scholar 

  • 31.

    Donelson, J. M., McCormick, M. I., Booth, D. J. & Munday, P. L. Reproductive acclimation to increased water temperature in a tropical reef fish. PLoS ONE 9, e97223 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Habary, A., Johansen, J. L., Nay, T. J., Steffensen, J. F. & Rummer, J. L. Adapt, move or die—how will tropical coral reef fishes cope with ocean warming?. Glob. Chang. Biol. 23, 566–577 (2017).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Chang. 10, 576–581 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Gerber, L. R., Mancha-Cisneros, M. D. M., O’Connor, M. I. & Selig, E. R. Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere 5, art33 (2014).

    Article 

    Google Scholar 

  • 36.

    Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404 (2005).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Berenshtein, I. et al. Biophysical simulations support schooling behavior of fish larvae throughout ontogeny. Front. Mar. Sci. 5, 1–12 (2018).

    Article 

    Google Scholar 

  • 38.

    IOCCG. Remote sensing in fisheries and aquaculture. and Aquaculture. , IOCCG,. http://www.ioccg.org/reports/report8.pdf (2009).

  • 39.

    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Donlon, C. J. et al. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: a new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Franco, B. C. et al. Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review. Clim. Change https://doi.org/10.1007/s10584-020-02783-6 (2020).

    Article 

    Google Scholar 

  • 43.

    Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Ocean 121, 4928–4945 (2016).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  • 45.

    Pontes, G. M. et al. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes. Environ. Res. Lett. 11, 094013 (2016).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Donelson, J. M., Munday, P. L., Mccormick, M. I. & Nilsson, G. E. Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob. Chang. Biol. 17, 1712–1719 (2011).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Softw. 23, 1210–1214 (2008).

    Article 

    Google Scholar 

  • 48.

    Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965 (2018).

    Article 

    Google Scholar 

  • 49.

    Giglio, V. J. et al. Large and remote marine protected areas in the South Atlantic Ocean are flawed and raise concerns: Comments on Soares and Lucas (2018). Mar. Policy 96, 13–17 (2018).

    Article 

    Google Scholar 

  • 50.

    Garciá Molinos, J., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1–9 (2017).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Inagaki, K. Y., Pennino, M. G., Floeter, S. R., Hay, M. E. & Longo, G. O. Trophic interactions will expand geographically but be less intense as oceans warm. Glob. Chang. Biol. 26, 6805–6812 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Brierley, C. & Wainer, I. Inter-annual variability in the tropical Atlantic from the Last Glacial Maximum into future climate projections simulated by CMIP5/PMIP3. Clim. Past 14, 1377–1390 (2018).

    Article 

    Google Scholar 

  • 53.

    Andrello, M., Mouillot, D., Somot, S., Thuiller, W. & Manel, S. Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas. Divers. Distrib. 21, 139–150 (2015).

    Article 

    Google Scholar 

  • 54.

    Carr, M. H. et al. The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 6–29 (2017).

    Article 

    Google Scholar 

  • 55.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Morais, R. A., Ferreira, C. E. L. & Floeter, S. R. Spatial patterns of fish standing biomass across Brazilian reefs. J. Fish Biol. 91, 1642–1667 (2017).

  • 57.

    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian province. PLoS ONE 13, 1–15 (2018).

  • 58.

    Toste, R., Assad, L. P. D. F. & Landau, L. Downscaling of the global HadGEM2-ES results to model the future and present-day ocean conditions of the southeastern Brazilian continental shelf. Clim. Dyn. 0, 1–17 (2017).

  • 59.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century : projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Fairall, C. W. et al. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. Ocean 101, 1295–1308 (1996).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A. & Edson, J. B. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16, 571–591 (2003).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Lima, L. N., Pezzi, L. P., Penny, S. G. & Tanajura, C. A. S. An investigation of ocean model uncertainties through ensemble forecast experiments in the Southwest Atlantic Ocean. J. Geophys. Res. Ocean. 124, 432–452 (2019).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3, 1–20 (2001).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363 (1994).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Foltz, G. R., Schmid, C. & Lumpkin, R. An enhanced PIRATA dataset for tropical Atlantic Ocean-atmosphere research. J. Clim. 31, 1499–1524 (2018).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Booth, D. J., Beretta, G. A., Brown, L. & Figueira, W. F. Predicting success of range-expanding coral reef fish in temperate habitats using temperature-abundance relationships. Front. Mar. Sci. 5, (2018).

  • 67.

    Molina-ureña, H. Towards an Ecosystem Approach for Non-Target Reef Fishes: Habitat Uses and Population Dynamics of South Florida Parrotfishes (Perciformes: Scaridae). (Open Access Dissertations 237, 2009).

  • 68.

    Robertson, D. R. Egg size in relation to fertilization dynamics in free-spawning tropical reef fishes. Oecologia 108, 95–104 (1996).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Robertson, D. R. et al. Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes. Mol. Phylogenet. Evol. 40, 795–807 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Islam, M. A. A comparative study on numerical solutions of initial value problems (IVP) for ordinary differential equations (ODE) with Euler and Runge Kutta methods. Am. J. Comput. Math. 05, 393–404 (2015).

    Article 

    Google Scholar 

  • 71.

    D’Agostini, A., Gherardi, D. F. M. & Pezzi, L. P. Connectivity of marine protected areas and its relation with total kinetic energy. PLoS ONE 10, 1–19 (2015).

    Article 

    Google Scholar 

  • 72.

    Mitarai, S., Siegel, D. A., Watson, J. R., Dong, C. & McWilliams, J. C. Quantifying connectivity in the coastal ocean with application to the Southern California Bight. J. Geophys. Res. 114, C10026 (2009).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineering complex communities by directed evolution

    Crowdsourcing data on road quality and excess fuel consumption