in

Regional height growth models for Scots pine in Poland

  • 1.

    Bontemps, J. D. & Bouriaud, O. Predictive approaches to forest site productivity: Recent trends, challenges and future perspectives. Forestry 87, 109–128 (2014).

    Article 

    Google Scholar 

  • 2.

    Skovsgaard, J. P. & Vanclay, J. K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81, 13–31 (2008).

    Article 

    Google Scholar 

  • 3.

    Albert, M. & Schmidt, M. Climate-sensitive modelling of site-productivity relationships for Norway spruce (Picea abies (L.) Karst) and common beech (Fagus sylvatica L.). For. Ecol. Manag. 259, 739–749 (2010).

    Article 

    Google Scholar 

  • 4.

    Véga, C. & St-Onge, B. Mapping site index and age by linking a time series of canopy height models with growth curves. For. Ecol. Manag. 257, 951–959 (2009).

    Article 

    Google Scholar 

  • 5.

    Hägglund, B. & Lundmark, J. E. Site index estimation by means of site properties of Scots pine and Norway spruce in Sweden. Stud. For. Suec. 138, 5–38 (1977).

    Google Scholar 

  • 6.

    Johansson, T. Site index curves for common alder and grey alder growing on different types of forest soil in Sweden. Scand. J. For. Res. 14, 441–453 (1999).

    Article 

    Google Scholar 

  • 7.

    Raulier, F., Lambert, M.-C., Pothier, D. & Ung, C.-H. Impact of dominant tree dynamics on site index curves. For. Ecol. Manag. 184, 65–78 (2003).

    Article 

    Google Scholar 

  • 8.

    Corral Rivas, J. J., Álvarez González, J. G., Ruíz González, A. D. & von Gadow, K. Compatible height and site index models for five pine species in El Salto, Durango (Mexico). For. Ecol. Manag. 201, 145–160 (2004).

    Article 

    Google Scholar 

  • 9.

    Tewari, V. P., Rivas, J. J. C., VilČko, F. & Von Gadow, K. Height-Growth and site index equations for social forestry plantations of acacia nilotica and eucalyptus hybrid in gujarat state of India. For. Trees Livelihoods 17, 125–140 (2007).

    Article 

    Google Scholar 

  • 10.

    Monserud, R. A. & Rehfeldt, G. E. Genetic and environmental components of variation of site index in inland douglas-fir. For. Sci. 36, 1–9 (1990).

    Google Scholar 

  • 11.

    Alvarez-González, J. G., Ruiz-González, A. D., Rodríguez-Soalleiro, R. & Barrio-Anta, M. Ecorregional site index models for Pinus pinaster in Galicia (northwestern Spain). Ann. For. Sci. 62, 115–127 (2005).

    Article 

    Google Scholar 

  • 12.

    Bravo-Oviedo, A., Tomé, M., Bravo, F., Montero, G. & del Río, M. Dominant height growth equations including site attributes in the generalised algebraic difference approach. Can. J. For. Res. 38, 2348–2358 (2008).

    Article 

    Google Scholar 

  • 13.

    Johansson, T. Site index curves for Norway spruce plantations on farmland with different soil types. Stud. For. Suec. 198, 1–19 (1995).

    Google Scholar 

  • 14.

    Adams, J. P., Matney, T. G., Land, S. B. Jr., Belli, K. L. & Duzan, H. W. Jr. Incorporating genetic parameters into a loblolly pine growth-and-yield model. Can. J. For. Res. 36, 1959–1967 (2006).

    Article 

    Google Scholar 

  • 15.

    Buford, M. A. & Burkhart, H. E. Genetic improvement effects on growth and yield of loblolly pine plantations. For. Sci. 33, 707–724 (1987).

    Google Scholar 

  • 16.

    Monserud, R. A. Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. For. Sci. 30, 943–965 (1984).

    Google Scholar 

  • 17.

    García, O. Dynamical implications of the variability representation in site-index modelling. Eur. J. For. Res. 130, 671–675 (2010).

    Article 

    Google Scholar 

  • 18.

    Calama, R., Cañadas, N. & Montero, G. Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain. Ann. For. Sci. 60, 259–269 (2003).

    Article 

    Google Scholar 

  • 19.

    Adame, P., Hynynen, J., Cañellas, I. & del Río, M. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices. For. Ecol. Manag. 255, 1011–1022 (2008).

    Article 

    Google Scholar 

  • 20.

    Bravo-Oviedo, A., del Río, M. & Montero, G. Geographic variation and parameter assessment in generalised algebraic difference site index modelling. For. Ecol. Manag. 247, 107–119 (2007).

    Article 

    Google Scholar 

  • 21.

    Bontemps, J. & Bouriaud, O. Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 87, 1–20 (2013).

    Google Scholar 

  • 22.

    Claessens, H., Pauwels, D., Thibaut, A. & Rondeux, J. Site index curves and autecology of ash, sycamore and cherry in Wallonia (Southern Belgium). Forestry 72, 171–182 (1999).

    Article 

    Google Scholar 

  • 23.

    Karlsson, K. Height growth patterns of Scots pine and Norway spruce in the coastal areas of western Finland. For. Ecol. Manag. 135, 205–216 (2000).

    Article 

    Google Scholar 

  • 24.

    Martín-Benito, D., Gea-Izquierdo, G., del Río, M. & Cañellas, I. Long-term trends in dominant-height growth of black pine using dynamic models. For. Ecol. Manag. 256, 1230–1238 (2008).

    Article 

    Google Scholar 

  • 25.

    Dyrekcja Generalna Lasów Państwowych, Raport o stanie lasów w Polsce (2018).

  • 26.

    Socha, J. Long-term effect of wetland drainage on the productivity of Scots pine stands in Poland. For. Ecol. Manag. 274, 172–180 (2012).

    Article 

    Google Scholar 

  • 27.

    Bravo, F. & Montero, G. Site index estimation in Scots pine (Pinus sylvestris L.) stands in the High Ebro Basin (northern Spain) using soil attributes. Forestry 74, 395–406 (2001).

    Article 

    Google Scholar 

  • 28.

    Gadow, K.; Hui, G. Modelling Forest Development, Vol. 57, Forestry Sciences (Springer Netherlands, Dordrecht, 1999). ISBN 978–1–4020–0276–2.

  • 29.

    Schwappach, A. Ertragstafeln der Wichtigeren Holzarten (Druckerei Merkur, Prag, 1943).

    Google Scholar 

  • 30.

    Szymkiewicz, B. Niektóre zagadnienia dotyczące tablic zasobności drzewostanów sosnowych. Pr. IBL Seria A 67 (1948)

  • 31.

    Szymkiewicz, B. Tablice Zasobności i Przyrostu Drzewostanów (Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 2001). ISBN 83–09–01745–6.

  • 32.

    Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Socha, J. & Orzeł, S. Dynamic site index curves for Scots pine (Pinus sylvestris L.) in southern Poland. Sylwan 157, 26–38 (2013).

    Google Scholar 

  • 34.

    Socha, J., Tymińska-Czabańska, L., Grabska, E. & Orzeł, S. Site index models for main forest-forming tree species in Poland. Forests 11, 8–10 (2020).

    Google Scholar 

  • 35.

    Esri Inc. ArcGIS Pro (Version 2.2.0). Esri Inc. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (2020).

  • 36.

    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Br. 12, 662–666 (2017).

    Article 

    Google Scholar 

  • 37.

    Zielony, R., Kliczkowska, A. Regionalizacja Przyrodniczo-Leśna Polski 2010 (2012). ISBN 9788361633624.

  • 38.

    Carmean, W. H. Site index curves for upland oaks in the central states. For. Sci. 18, 109–120 (1972).

    Google Scholar 

  • 39.

    Mehtätalo, L. & Lappi, J. Biometry for Forestry and Environmental Data: with Examples in R 1st edn. (Chapman and Hall/CRC, Boca Raton, 2020).

    Book 

    Google Scholar 

  • 40.

    Nigh, G. Engelmann spruce site index models: a comparison of model functions and parameterisations. PLoS ONE 10, e0124079 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Pinheiro J., Bates D., & DebRoy S. S. D. nlme: Linear and Nonlinear Mixed Effects Models (2020).

  • 42.

    Wang, M., Borders, B. E. & Zhao, D. An empirical comparison of two subject-specific approaches to dominant heights modeling: the dummy variable method and the mixed model method. For. Ecol. Manag. 255, 2659–2669 (2008).

    Article 

    Google Scholar 

  • 43.

    Bronisz, K. & Mehtätalo, L. Mixed-effects generalised height–diameter model for young silver birch stands on post-agricultural lands. For. Ecol. Manage. 460, 117901 (2020).

    Article 

    Google Scholar 

  • 44.

    Wang, M., Bhatti, J., Wang, Y. & Varem-Sanders, T. Examining the gain in model prediction accuracy using serial autocorrelation for dominant height prediction. For. Sci. 57, 241–251 (2011).

    Google Scholar 

  • 45.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2020).

  • 46.

    Bailey, R. L. & Clutter, J. L. Base-age invariant polymorphic site curves. For. Sci. 20, 155–159 (1974).

    Google Scholar 

  • 47.

    Cieszewski, J. & Bailey, L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. For. Sci. 46, 116–126 (2000).

    Google Scholar 

  • 48.

    Cieszewski, C. J. Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Can. J. For. Res. For. 31, 165–173 (2001).

    Article 

    Google Scholar 

  • 49.

    Krumland, B. & Eng, H. Site index systems for major young-growth forest and Woodland species in North California. Calif. For. 4, 1–220 (2005).

    Google Scholar 

  • 50.

    Cieszewski, C. J. Developing a well-behaved dynamic site equation using a modified hossfeld IV function Y 3 = (axm)/(c + x m–1), a simplified mixed-model and scant subalpine fir data. For. Sci. 49, 539–554 (2003).

    Google Scholar 

  • 51.

    Sharma, R. P., Brunner, A., Eid, T. & Øyen, B.-H. Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. For. Ecol. Manag. 262, 2162–2175 (2011).

    Article 

    Google Scholar 

  • 52.

    Anta, M. B. et al. Development of a basal area growth system for maritime pine in northwestern Spain using the generalised algebraic difference approach. Can. J. For. Res. 36, 1461–1474 (2006).

    Article 

    Google Scholar 

  • 53.

    Cieszewski, C. J., Harrison, M. & Martin, S. W. Examples of practical methods for unbiased parameter estimation in self-referencing functions. In Proceedings of the First International Conference on Measurements and Quantitative Methods and Management and The 1999 Southern Mensur (ed. Cieszewski, C. J.) (2000).

  • 54.

    Nunes, L., Patrício, M., Tomé, J. & Tomé, M. Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables. Ann. For. Sci. 68, 311–323 (2011).

    Article 

    Google Scholar 

  • 55.

    Cieszewski, C. J. Comparing properties of self-referencing models based on nonlinear-fixed-effects versus nonlinear-mixed-effects modeling approaches. Math. Comput. For. Nat. Sci. 10, 46–57 (2018).

    Google Scholar 

  • 56.

    Seynave, I. et al. Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can. J. For. Res. 35, 10 (2005).

    Article 

    Google Scholar 

  • 57.

    Brandl, S. et al. Static site indices from different national forest inventories: harmonisation and prediction from site conditions. Ann. For. Sci. 75, 1–17 (2018).

    Article 

    Google Scholar 

  • 58.

    Breda, N., Huc, R. & André Granier, E. D. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006).

    Article 

    Google Scholar 

  • 59.

    Loik, M. E., Breshears, D. D., Lauenroth, W. K. & Belnap, J. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141, 269–281 (2004).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Kundzewicz, Z. W., Hov, Ø., Okruszko, T. Zmiany klimatu i ich wpływ na wybrane sektory w Polsce. 257 (2017).

  • 61.

    Barrio Anta, M. & Dieguez-Aranda, U. Site quality of pedunculate oak (Quercus robur L.) stands in Galicia (northwest Spain). Eur. J. For. Res. 124, 19–28 (2005).

    Article 

    Google Scholar 

  • 62.

    Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L. & Prior, L. D. Detecting trends in tree growth: not so simple. Trends Plant Sci. 18, 11–17 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Isaev, A., Korovin, G., Zamolodkchikov, D., Utkin, A. & Pryaznikov, A. Carbon stock and depostion in phytomass of the Russian forests 247–256 (Kluwer, Amsterdam, 1995).

    Google Scholar 

  • 64.

    Fang, J. Y. & Wang, Z. M. Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass. Ecol. Res. 16, 587–592 (2001).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Schroeder, P., Brown, S., Mo, J., Birdsey, R. & Cieszewski, C. Biomass estimation for temperate broadleaf forests of the United States using inventory data. For. Sci. 43, 424–434 (1997).

    Google Scholar 

  • 66.

    Bravo-Oviedo, A., Gallardo-Andrés, C., del Río, M. & Montero, G. Regional changes of Pinus pinaster site index in Spain using a climate-based dominant height model. Can. J. For. Res. 40, 2036–2048 (2010).

    Article 

    Google Scholar 

  • 67.

    Woodbury, P. B., Smith, J. E., Weinstein, D. & Laurence, J. Assessing potential climate change effects on loblolly pine growth: a probabilistic regional modeling approach. For. Ecol. Manag. 107, 99–116 (1998).

    Article 

    Google Scholar 

  • 68.

    Latta, G., Temesgen, H. & Barrett, T. M. B. M. Mapping and imputing potential productivity of Pacific Northwest forests using climate variables. Can. J. For. Res. 39, 1197–1207 (2009).

  • 69.

    Coops, N. C., Hember, R. & Waring, R. H. Assessing the impact of current and projected climates on Douglas-Fir productivity in British Columbia, Canada, using a process-based model (3-PG). Can. J. For. Res. 40, 511–524 (2010).

    Article 

    Google Scholar 

  • 70.

    Coops, N. C., Coggins, S. B. & Kurz, W. a Mapping the environmental limitations to growth of coastal Douglas-fir stands on Vancouver Island, British Columbia. Tree Physiol. 27, 805–815 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineering complex communities by directed evolution

    Crowdsourcing data on road quality and excess fuel consumption