Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).
Google Scholar
Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. B 340, 215–225 (1993).
Google Scholar
Bakker, T. C. & Mundwiler, B. Female mate choice and male red coloration in a natural three-spined stickleback (Gasterosteus aculeatus) population. Behav. Ecol. 5, 74–80 (1994).
Google Scholar
Molnár, O., Bajer, K., Mészáros, B., Török, J. & Herczeg, G. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis. Naturwissenschaften 100, 551–558 (2013).
Google Scholar
Wolfenbarger, L. L. Red coloration of male northern cardinals correlates with mate quality and territory quality. Behav. Ecol. 10, 80–90 (1999).
Google Scholar
Endler, J. A. Natural-selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).
Google Scholar
Marcondes, R. S. & Brumfield, R. T. Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution 73, 704–719 (2019).
Google Scholar
Alberts, A. C. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).
Campos, S. M. et al. Volatile fatty acid and aldehyde abundances evolve with behavior and habitat temperature in Sceloporus lizards. Behav. Ecol. (2020).
Stuart-Fox, D. M. & Ord, T. J. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. B 271, 2249–2255 (2004).
Google Scholar
Karlson, P. & Lüscher, M. ‘Pheromones’: A new term for a class of biologically active substances. Nature 183, 55–56 (1959).
Google Scholar
Schmidt, H. R. & Benton, R. Molecular mechanisms of olfactory detection in insects: Beyond receptors. Open Biol. 10, 200252 (2020).
Google Scholar
Symonds, M. R. & Elgar, M. A. The evolution of pheromone diversity. Trends Ecol. Evol. 23, 220–228 (2008).
Google Scholar
Boulet, M., Charpentier, M. J. & Drea, C. M. Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evol. Biol. 9, 281 (2009).
Google Scholar
Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Senses 32, 493–504 (2007).
Google Scholar
Janssenswillen, S. et al. Origin and diversification of a salamander sex pheromone system. Mol. Biol. Evol. 32, 472–480 (2015).
Google Scholar
Kikuyama, S. et al. Sodefrin: A female-attracting peptide pheromone in newt cloacal glands. Science 267, 1643–1645 (1995).
Google Scholar
Wabnitz, P. A., Bowie, J. H., Tyler, M. J., Wallace, J. C. & Smith, B. P. Aquatic sex pheromone from a male tree frog. Nature 401, 444–445 (1999).
Google Scholar
Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).
Google Scholar
Martín, J. & López, P. Pheromones and chemical communication in lizards. In Reproductive Biology and Phylogeny of Lizards and Tuatara (eds Rheubert, J. L. et al.) 43–75 (CRC Press, Boca Raton, 2014).
Silva, L. & Antunes, A. Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Ann. Rev. Anim. Biosci. 5, 353–370 (2017).
Google Scholar
Bonadonna, F. & Nevitt, G. A. Partner-specific odor recognition in an Antarctic seabird. Science 306, 835–835 (2004).
Google Scholar
Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).
Google Scholar
Krause, E. T., Krüger, O., Kohlmeier, P. & Caspers, B. A. Olfactory kin recognition in a songbird. Biol. Lett. 8, 327–329 (2012).
Google Scholar
Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).
Google Scholar
Wyatt, T. D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 97, 273–280 (2014).
Google Scholar
Baeckens, S., Edwards, S., Huyghe, K. & Van Damme, R. Chemical signalling in lizards: An interspecific comparison of femoral pore numbers in Lacertidae. Biol. J. Linn. Soc. 114, 44–57 (2015).
Google Scholar
Ossip-Klein, A. G., Fuentes, J. A., Hews, D. K. & Martins, E. P. Information content is more important than sensory system or physical distance in guiding the long-term evolutionary relationships between signaling modalities in Sceloporus lizards. Behav. Ecol. Sociobiol. 67, 1513–1522 (2013).
Google Scholar
Pincheira-Donoso, D., Hodgson, D. J. & Tregenza, T. Comparative evidence for strong phylogenetic inertia in precloacal signalling glands in a species-rich lizard clade. Evol. Ecol. Res. 10, 11–28 (2008).
Wang, Z. et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45, 701–706 (2013).
Google Scholar
Schwenk, K. Comparative anatomy and physiology of chemical senses in nonavian aquatic reptiles. In Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates (eds Thewissen, J. H. M. & Nummela, S.) 65–81 (University of California Press, Berkeley, 2008).
Vieyra, M. L. Olfactory receptor genes in terrestrial, freshwater, and sea turtles: Evidence for a reduction in the number of functional genes in aquatic species. Chelon. Conserv. Biol. 10, 181–187 (2011).
Google Scholar
Mason, R. T. & Parker, M. R. Social behavior and pheromonal communication in reptiles. J. Comp. Physiol. A. 196, 729–749 (2010).
Google Scholar
Ehrenfeld, J. G. & Ehrenfeld, D. W. Externally secreting glands of freshwater and sea turtles. Copeia 1973, 305–314 (1973).
Google Scholar
Waagen, G. N. Musk glands in recent turtles. Master of Science thesis, Department of Biology, University of Utah (1972).
Weldon, P. J., Flachsbarth, B. & Schulz, S. Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 25, 738–756 (2008).
Google Scholar
Ibáñez, A. et al. The chemistry and histology of sexually dimorphic mental glands in the freshwater turtle, Mauremys leprosa. PeerJ 8, e9047 (2020).
Google Scholar
Rose, F. L., Drotman, R. & Weaver, W. G. Electrophoresis of chin gland extracts of Gopherus (tortoises). Comp. Biochem. Physiol. 29, 847–851 (1969).
Google Scholar
Winokur, R. M. & Legler, J. M. Chelonian mental glands. J. Morphol. 147, 275–291 (1975).
Google Scholar
Alberts, A. C., Rostal, D. C. & Lance, V. A. Studies on the chemistry and social significance of chin gland secretions in the desert tortoise, Gopherus agassizii. Herpetol. Monogr. 8, 116–124 (1994).
Google Scholar
Kelley, M. D. & Mendonça, M. T. Mental gland secretions as a social cue in gopher tortoises (Gopherus polyphemus): Tortoise presence stimulates and maintains social behaviour with chemical cues. Acta Ethol. 24, 1–8 (2020).
Google Scholar
Rose, F. L. Tortoise chin gland fatty acid composition: Behavioral significance. Comp. Biochem. Physiol. 32, 577–580 (1970).
Google Scholar
Pereira, A. G., Sterli, J., Moreira, F. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).
Google Scholar
Grosse, A. M., Sterrett, S. C. & Maerz, J. C. Effects of turbidity on the foraging success of the eastern painted turtle. Copeia 2010, 463–467 (2010).
Google Scholar
Vitt, L. J. & Caldwell, J. P. Herpetology: An Introductory Biology of Amphibians and Reptiles (Academic Press, 2013).
Thomson, R. C., Spinks, P. Q. & Shaffer, H. B. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc. Natl. Acad. Sci. 118, e2012215118 (2021).
Google Scholar
Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20, 1–16 (2020).
Google Scholar
Joyce, W. G., Parham, J. F., Lyson, T. R., Warnock, R. C. & Donoghue, P. C. A divergence dating analysis of turtles using fossil calibrations: An example of best practices. J. Paleontol. 87, 612–634 (2013).
Google Scholar
Shaffer, H. B., McCartney-Melstad, E., Near, T. J., Mount, G. G. & Spinks, P. Q. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol. 115, 7–15 (2017).
Google Scholar
Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013).
Google Scholar
Joyce, W. G. & Gauthier, J. A. Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proc. R. Soc. Lond. B 271, 1–5 (2004).
Google Scholar
Quagliata, S., Malentacchi, C., Delfino, C., Brunasso, A. M. & Delfino, G. Adaptive evolution of secretory cell lines in vertebrate skin. Caryologia 59, 187–206 (2006).
Google Scholar
Shi, P. & Zhang, J. Extraordinary diversity of chemosensory receptor gene repertoires among vertebrates. In Chemosensory Systems in Mammals, Fishes, and Insects (eds Meyerhof, W. & Korsching, S.) 1–23 (Springer, Berlin, 2009).
Swaney, W. T. & Keverne, E. B. The evolution of pheromonal communication. Behav. Brain Res. 200, 239–247 (2009).
Google Scholar
Martín, J. & López, P. Effects of global warming on sensory ecology of rock lizards: Increased temperatures alter the efficacy of sexual chemical signals. Funct. Ecol. 27, 1332–1340 (2013).
Google Scholar
Ibáñez, A., López, P. & Martín, J. Discrimination of conspecifics’ chemicals may allow Spanish terrapins to find better partners and avoid competitors. Anim. Behav. 83, 1107–1113 (2012).
Google Scholar
Lewis, C. H., Molloy, S. F., Chambers, R. M. & Davenport, J. Response of common musk turtles (Sternotherus odoratus) to intraspecific chemical cues. J. Herpetol. 41, 349–353 (2007).
Google Scholar
Poschadel, J. R., Meyer-Lucht, Y. & Plath, M. Response to chemical cues from conspecifics reflects male mating preference for large females and avoidance of large competitors in the European pond turtle, Emys orbicularis. Behaviour 143, 569–587 (2006).
Google Scholar
Weaver, W. G. Courtship and combat behavior in Gopherus berlandieri. Bull. Fla. St. Mus. 15, 1–43 (1970).
Auffenberg, W. On the courtship of Gopherus polyphemus. Herpetologica 22, 113–117 (1966).
Augustine, L. & Haislip, N. Husbandry and reproduction of the Indochinese box turtle Cuora galbinifrons, Bourret’s box turtle Cuora bourreti and Southern Vietnam box turtle Cuora picturata in North America. Int. Zoo Yearb. 53, 238–249 (2019).
Google Scholar
Liu, Y.-X., Davy, C. M., Shi, H.-T. & Murphy, R. W. Sex in the half-shell: A review of the functions and evolution of courtship behavior in freshwater turtles. Chelon. Conserv. Biol. 12, 84–100 (2013).
Google Scholar
Schilde, M. Beobachtungen zum Fortpflanzungsverhalten von Sacalia bealei und Sacalia quadriocellata. Radiata 14, 30–32 (2005).
Fritz, U. Courtship behavior and systematics in the subtribe Nectemydina. 2. A comparison above the species level and remarks on the evolution of behaviour elements. Bull. Chicago Herpetol. Soc. 34, 225–236 (1999).
Martín, J. & López, P. Multimodal sexual signals in male ocellated lizards Lacerta lepida: Vitamin E in scent and green coloration may signal male quality in different sensory channels. Naturwissenschaften 97, 545–553 (2010).
Google Scholar
Rowe, C. Receiver psychology and the evolution of multicomponent signals. Anim. Behav. 58, 921–931 (1999).
Google Scholar
Martins, E. P. et al. Evolving from static to dynamic signals: Evolutionary compensation between two communicative signals. Anim. Behav. 102, 223–229 (2015).
Google Scholar
Ferrara, C. R., Vogt, R. C. & Sousa-Lima, R. S. Turtle vocalizations as the first evidence of posthatching parental care in chelonians. J. Comp. Psychol. 127, 24 (2013).
Google Scholar
Bulté, G., Germain, R. R., O’Connor, C. M. & Blouin-Demers, G. Sexual dichromatism in the northern map turtle, Graptemys geographica. Chelon. Conserv. Biol. 12, 187–192 (2013).
Google Scholar
Ibáñez, A., Marzal, A., López, P. & Martín, J. Sexually dichromatic coloration reflects size and immunocompetence in female Spanish terrapins, Mauremys leprosa. Naturwissenschaften 100, 1137–1147 (2013).
Google Scholar
Rowe, J. W., Gradel, J. R., Bunce, C. F. & Clark, D. L. Sexual dimorphism in size and shell shape, and dichromatism of spotted turtles (Clemmys guttata) in southwestern Michigan. Amphibia-Reptilia 33, 443–450 (2013).
Google Scholar
Steffen, J. E., Learn, K. M., Drumheller, J. S., Boback, S. M. & McGraw, K. J. Carotenoid composition of colorful body stripes and patches in the painted turtle (Chrysemys picta) and red-eared slider (Trachemys scripta). Chelon. Conserv. Biol. 14, 56–63 (2015).
Google Scholar
Moll, E. O., Matson, K. E. & Krehbiel, E. B. Sexual and seasonal dichromatism in the Asian river turtle Callagur borneoensis. Herpetologica 37, 181–194 (1981).
Praschag, P. et al. A new subspecies of Batagur affinis (Cantor, 1847), one of the world’s most critically endangered chelonians (Testudines: Geoemydidae). Zootaxa 2233, 57–68 (2009).
Google Scholar
Praschag, P., Hundsdörfer, A. & Fritz, U. Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella, Kachuga, Pangshura). Zool. Scr. 36, 429–442 (2007).
Google Scholar
Fritz, U. Courtship behavior and systematics in the subtribe Nectemydina. 1. The genus Trachemys, especially Trachemys scripta callirostris (Gray, 1855). Bull. Chicago Herpetol. Soc. 33, 225–236 (1998).
Ferrara, C. R., Vogt, R. C., Eisemberg, C. C. & Doody, J. S. First evidence of the pig-nosed turtle (Carettochelys insculpta) vocalizing underwater. Copeia 105, 29–32 (2017).
Google Scholar
Baeckens, S. & Whiting, M. J. Investment in chemical signalling glands facilitates the evolution of sociality in lizards. Proc. R. Soc. B 288, 20202438 (2021).
Google Scholar
Baeckens, S., García-Roa, R., Martín, J. & Van Damme, R. The role of diet in shaping the chemical signal design of lacertid lizards. J. Chem. Ecol. 43, 902–910 (2017).
Google Scholar
Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).
Google Scholar
Kopena, R., Martín, J., López, P. & Herczeg, G. Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS ONE 6, e19410 (2011).
Google Scholar
Martin, J., Ortega, J. & Lopez, P. Interpopulational variations in sexual chemical signals of Iberian wall lizards may allow maximizing signal efficiency under different climatic conditions. PLoS ONE 10, e0131492 (2015).
Google Scholar
Donihue, C. M. et al. Rapid and repeated divergence of animal chemical signals in an island introduction experiment. J. Anim. Ecol. 89, 1458–1467 (2020).
Google Scholar
Novelli, I. A. Estudo morfológico (anatômico e histológico) do sistema tegumentar de Hydromedusa maximiliani (Mikan, 1820) (Testudines, Chelidae) e Phrynops geoffroanus (Schweigger, 1812) (Testudines, Chelidae). Doctoral thesis, Universidade Federal Rural do Rio de Janeiro (2011).
Crawford, N. G. et al. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257 (2015).
Google Scholar
Bonin, F., Devaux, B. & Dupré, A. Turtles of the World (JHU Press, Baltimore, 2006).
Bour, R. Global diversity of turtles (Chelonii; Reptilia) in freshwater. Hydrobiologia 595, 593–598 (2008).
Google Scholar
Ernst, C. H. & Barbour, R. W. Turtles of the World (Smithsonian Institution Press, Washington DC, 1989).
Beaulieu, J. M., Oliver, J. C. & O’Meara, B. C. corHMM: Analysis of Binary Character Evolution, https://CRAN.R-project.org/package=corHMM (2017).
Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).
Google Scholar
Beaulieu, J. M. & Donoghue, M. J. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132–3144 (2013).
Google Scholar
Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
Google Scholar
Pagel, M. Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).
Google Scholar
Gray, K. M. & Steidl, R. J. A plant invasion affects condition but not density or population structure of a vulnerable reptile. Biol. Invasions 17, 1979–1988 (2015).
Google Scholar
Edwards, T. et al. The desert tortoise trichotomy: Mexico hosts a third, new sister-species of tortoise in the Gopherus morafkai—G. agassizii group. ZooKeys 562, 131–158 (2016).
Google Scholar
Source: Ecology - nature.com