in

Quantifying global potential for coral evolutionary response to climate change

  • 1.

    IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, 2019).

  • 2.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS 
    Article 

    Google Scholar 

  • 3.

    McCauley, D. J. & Pinsky, M. L. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS 

    Google Scholar 

  • 5.

    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

    Article 

    Google Scholar 

  • 7.

    Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    CAS 
    Article 

    Google Scholar 

  • 8.

    West, J. M. & Salm, R. V. Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv. Biol. 17, 956–967 (2003).

    Article 

    Google Scholar 

  • 9.

    Baskett, M. L., Nisbet, R. M., Kappel, C. V., Mumby, P. J. & Gaines, S. D. Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Glob. Change Biol. 16, 1229–1246 (2010).

    Article 

    Google Scholar 

  • 10.

    Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 11, e12587 (2018).

    Article 

    Google Scholar 

  • 11.

    Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).

    Article 

    Google Scholar 

  • 12.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M. & Hoegh-Guldberg, O. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Change Biol. 11, 2251–2265 (2005).

    Article 

    Google Scholar 

  • 14.

    Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2012).

    Article 

    Google Scholar 

  • 15.

    Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Change Biol. 20, 103–112 (2014).

    Article 

    Google Scholar 

  • 16.

    Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Change Biol. 20, 125–139 (2014).

    Article 

    Google Scholar 

  • 17.

    Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).

    Article 

    Google Scholar 

  • 18.

    Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. Glob. Change Biol. 26, 3473–3481 (2020).

    Article 

    Google Scholar 

  • 19.

    Baskett, M. L., Gaines, S. D. & Nisbet, R. M. Symbiont diversity may help coral reefs survive moderate climate change. Ecol. Appl. 19, 3–17 (2009).

    Article 

    Google Scholar 

  • 20.

    Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, e1007220 (2018).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Muscatine, L., Falkowski, P. G., Porter, J. W. & Dubinsky, Z. Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. Lond. B. 222, 181–202 (1984).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Csaszar, N. B., Ralph, P. J., Frankham, R., Berkelmans, R. & van Oppen, M. J. Estimating the potential for adaptation of corals to climate warming. PLoS ONE 5, e9751 (2010).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).

    Article 

    Google Scholar 

  • 24.

    Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Baker, A. C. Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34, 661–689 (2003).

  • 26.

    Berkelmans, R. & van van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. Lond. B 273, 2305–2312 (2006).

    Google Scholar 

  • 27.

    National Academies of Sciences, Engineering, and Medicine A research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019).

  • 28.

    National Academies of Sciences, Engineering, and Medicine A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019).

  • 29.

    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).

    Article 

    Google Scholar 

  • 30.

    Chan, N. C. S. & Connolly, S. R. Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob. Change Biol. 19, 282–290 (2013).

    Article 

    Google Scholar 

  • 31.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).

    Article 

    Google Scholar 

  • 33.

    Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Madin, J. S., Hughes, T. P. & Connolly, S. R. Calcification, storm damage and population resilience of tabular corals under climate change. PLoS ONE 7, e46637 (2012).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Hoegh-Guldberg, O. et al. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 3 (IPCC, 2018).

  • 36.

    Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).

    Article 

    Google Scholar 

  • 37.

    Wilkinson, C. R. Global and local threats to coral reef functioning and existence: review and predictions. Mar. Freshw. Res. 50, 867–878 (1999).

    Google Scholar 

  • 38.

    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Kleypas, J. A. et al. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Glob. Change Biol. 22, 3539–3549 (2016).

    Article 

    Google Scholar 

  • 40.

    Heron, S. F. et al. Validation of reef-scale thermal stress satellite products for coral bleaching monitoring. Remote Sens. 8, 59 (2016).

    Article 

    Google Scholar 

  • 41.

    Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos. 118, 1139–1150 (2013).

    Article 

    Google Scholar 

  • 43.

    Ziegler, M., Eguíluz, V. & Duarte, C. et al. Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME J 12, 161–172 (2018).

    Article 

    Google Scholar 

  • 44.

    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. USA 105, 10444–10449 (2008).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Thornhill, D. J., Xiang, Y. U., Fitt, W. K. & Santos, S. R. Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS ONE 4, e6262 (2009).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Stat, M., Loh, W. K. W., LaJeunesse, T. C., Hoegh-Guldberg, O. & Carter, D. A. Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28, 709–713 (2009).

    Article 

    Google Scholar 

  • 47.

    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Change Biol. 23, 4675–4688 (2017).

    Article 

    Google Scholar 

  • 48.

    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).

    Article 

    Google Scholar 

  • 49.

    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).

    Article 

    Google Scholar 

  • 50.

    Langmead, O. & Sheppard, C. Coral reef community dynamics and disturbance: a simulation model. Ecol. Modell. 175, 271–290 (2004).

    Article 

    Google Scholar 

  • 51.

    Chancerelle, Y. Methods to estimate actual surface areas of scleractinian coral at the colony- and community-scale. Oceanol. Acta 23, 211–219 (2000).

    Article 

    Google Scholar 

  • 52.

    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Huston, M. Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4, 19–25 (1985).

    Article 

    Google Scholar 

  • 54.

    Hoogenboom, M., Beraud, E. & Ferrier-Pagès, C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29, 21–29 (2010).

    Article 

    Google Scholar 

  • 55.

    Cunning, R. & Baker, A. C. Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front. Microbiol. 5, 400 (2014).

    Article 

    Google Scholar 

  • 56.

    McClanahan, T., Muthiga, N. & Mangi, S. Coral and algal changes after the 1998 coral bleaching: interaction with reef management and herbivores on Kenyan reefs. Coral Reefs 19, 380–391 (2001).

    Article 

    Google Scholar 

  • 57.

    Fitt, W. K., McFarland, F. K., Warner, M. E. & Chilcoat, G. C. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 45, 677–685 (2000).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  • 59.

    Jon, N. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol. Oceanogr. 49, 1269–1277 (2004).

    Article 

    Google Scholar 

  • 60.

    Mousseau, T. A. & Roff, D. A. Natural selection and the heritability of fitness components. Heredity 59, 181–197 (1987).

    Article 

    Google Scholar 

  • 61.

    Lynch, M. The rate of polygenic mutation. Genet. Res. 51, 137–148 (1988).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Donner, S. D., Rickbeil, G. J. & Heron, S. F. A new, high-resolution global mass coral bleaching database. PLoS ONE 12, e0175490 (2017).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. C. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34, 155–160 (2015).

    Article 

    Google Scholar 

  • 64.

    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).

    Article 

    Google Scholar 

  • 65.

    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    Article 

    Google Scholar 

  • 66.

    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2012).

    Article 

    Google Scholar 

  • 67.

    Lough, J. M. & Barnes, D. J. Environmental controls on growth of the massive coral Porites. J. Exp. Mar. Biol. Ecol. 245, 225–243 (2000).

    CAS 
    Article 

    Google Scholar 

  • 68.

    UNEP-WCMC, WorldFish Centre, WRI & TNC. Global Distribution of Warm-water Coral Reefs, Compiled From Multiple Sources Including the Millennium Coral Reef Mapping Project. Version 4.1 (UN Environment World Conservation Monitoring Centre. Data, 2021); https://doi.org/10.34892/t2wk-5t34

  • 69.

    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).

    Article 
    CAS 

    Google Scholar 

  • 70.

    Fitt, W., Brown, B., Warner, M. & Dunne, R. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).

    Article 

    Google Scholar 

  • 71.

    González-Espinosa, P. C. & Donner, S. D. Predicting cold-water bleaching in corals: role of temperature, and potential integration of light exposure. Mar. Ecol. Prog. Ser. 642, 133–146 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Crowdsourcing data on road quality and excess fuel consumption

    Ice melts on US-Sudan relations, providing new opportunities