in

Impact of natural salt lick on the home range of Panthera tigris at the Royal Belum Rainforest, Malaysia

  • 1.

    Hamdan, A. et al. A preliminary study of mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest Malaysia. Sci. Rep. 10, 14105. https://doi.org/10.1038/s41598-020-71047-1 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Lazarus, B. A. et al. Topographical differences impacting wildlife dynamics at natural salt licks in the Royal Belum Rainforest. Asian J. Conserv. Biol. 8(2), 97–101 (2019).

    Google Scholar 

  • 3.

    Brightsmith, D. J., Taylor, J. & Phillips, T. D. The roles of soil characteristics and toxin adsorption in avian geophagy. Biotropica 40, 766–774 (2008).

    Article 

    Google Scholar 

  • 4.

    Ayotte, J. B., Parker, K. L., Arocena, J. & Gillingham, M. P. Chemical composition of lick soils: functions of soil ingestion by four ungulate species. J. Mammal. 87(5), 878–888 (2006).

    Article 

    Google Scholar 

  • 5.

    Matsubayashi, H. et al. Importance of natural licks for mammals in Bornean Inland Tropical Rainforest. Ecol. Res. 22, 742 (2006).

    Article 

    Google Scholar 

  • 6.

    Tracy, B. F. & McNaughton, S. J. Elemental analysis of mineral licks from the Serengeti National Park, the Konza Prairie and Yellowstone National Park. Ecography 18, 91–94 (1995).

    Article 

    Google Scholar 

  • 7.

    Razali, N. B. et al. Physical factors at salt licks influenced the frequency of wildlife visitation in the Malaysian tropical rainforest. Trop. Zool. 33(3), 83–96. https://doi.org/10.4081/tz.2020.69 (2020).

    Article 

    Google Scholar 

  • 8.

    Owen-Smith, N. & Mills, M. Predator-prey size relationships in an African large-mammal food web. J. Anim. Ecol. 77, 173–183 (2008).

    Article 

    Google Scholar 

  • 9.

    Mathers, K. L., Rice, S. P. & Wood, P. J. Predator, prey, and substrate interactions: the role of faunal activity and substrate characteristics. Ecosphere 10(1), e02545 (2019).

    Article 

    Google Scholar 

  • 10.

    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).

    Article 

    Google Scholar 

  • 11.

    Stevens, A. Dynamics of predation. Nat. Educ. Knowl. 3(10), 46 (2010).

    Google Scholar 

  • 12.

    Lima, S. T. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 17(2), 70–75 (2002).

    Article 

    Google Scholar 

  • 13.

    Cuyper, A. D. et al. Predator size and prey size–gut capacity ratios determine kill frequency and carcass production in terrestrial carnivorous mammals. Oikos https://doi.org/10.1111/oik.05488 (2018).

    Article 

    Google Scholar 

  • 14.

    Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294(5548), 1923–1926 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Couturier, S. & Barrete, C. The behaviour of moose at natural mineral springs in Quebec. Can. J. Zool. 66, 522–528 (1987).

    Article 

    Google Scholar 

  • 16.

    Ruggiero, R. D. & Fay, J. M. Utilization of termitarium soils by elephants and its ecological implications. Afr. J. Ecol. 32, 222–232 (1994).

    Article 

    Google Scholar 

  • 17.

    Shahfiz, M. A. et al. Checklist of vertebrates at Primary Linkages 2 (PL2) of the central forest spine ecological corridor in Belum Temengor Forest Reserves, Perak, Peninsular Malaysia. Malays. For. 82(2), 463–485 (2019).

    Google Scholar 

  • 18.

    Liyana, N. M., Othman, Z., Wahid, A. R. & Hakimie, A. A. Habitat suitability prediction model of wildlife at Royal Belum State Park using geographical information system. Int. J. Geoinform. 12(2), 1–8 (2016).

    Google Scholar 

  • 19.

    Kawanishi, K. et al. The Malayan tiger. In In Noyes Series in Animal Behavior, Ecology, Conservation and Management, Tigers of the World 2nd edn (eds Tilson, R. & Nyhus, P. J.) 367–376 (William Andrew Publishing, Norwich, 2010).

    Google Scholar 

  • 20.

    Lynam, A. J., Laidlaw, R., Wan Noordin, W. S., Elagupillay, S. & Bennett, E. L. Assessing the conservation status of the tiger Panthera tigris at priority sites in Peninsular Malaysia. Oryx 41(4), 454–462. https://doi.org/10.1017/S0030605307001019 (2007).

    Article 

    Google Scholar 

  • 21.

    Kawanishi, K., Rayan, M. D., Gumal, M. T. & Shepherd, C. R. Extinction process of the sambar in Peninsular Malaysia. Deer Spec. Group Newsl. N. 26, 48–59 (2014).

    Google Scholar 

  • 22.

    Simcharoen, A. et al. Female tiger Panthera tigris home range size and prey abundance: important metrics for management. Oryx 48(3), 370–377. https://doi.org/10.1017/S0030605312001408 (2014).

    Article 

    Google Scholar 

  • 23.

    Kedri, K. et al. Distribution and ecology of Rafflesia in Royal Belum state park, Perak, Malaysia. Int. J. Eng. Technol. 7(229), 292–296 (2018).

    Article 

    Google Scholar 

  • 24.

    Misni, A., Rauf, A., Rasam, A. & Buyadi, A. S. N. Spatial analysis of habitat conservation for hornbills: a case study of Royal Belum-Temengor forest complex in Perak Sate Park Malaysia. Pertanika J. Soc. Sci. Hum. 25(S), 11–20 (2017).

    Google Scholar 

  • 25.

    Rovero, F., Zimmermann, F., Berzi, D. & Meek, P. Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix 2, 6318 (2013).

    Google Scholar 

  • 26.

    Liu, N., Zhao, Q., Zhang, N., Cheng, X., & Zhu, J. Pose-guided complementary features learning for Amur tiger re-identification, in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 286–293. https://doi.org/10.1109/ICCVW.2019.00038 (2019).

  • 27.

    Sharma, S., Jhala, Y. & Sawarkar, V. B. Identification of individual tigers (Panthera tigris) from their pugmarks. J. Zool. 267, 9–18 (2005).

    Article 

    Google Scholar 

  • 28.

    Cho, Y. et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun. 4, 2433 (2013).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Kerley, L. L. Using dogs for tiger conservation and research. Integr. Zool. 5, 390–396 (2010).

    Article 

    Google Scholar 

  • 30.

    Li, S., Li, J., Tang, H., Qian, R., & Lin, W. ATRW: a benchmark for Amur tiger re-identification in the wild, in Proceedings of the 28th ACM International Conference on Multimedia (MM ’20), October 12–16, 2020, Seattle, WA, USA. https://doi.org/10.1145/3394171.3413569 (ACM, New York, NY, USA, 2020).

  • 31.

    Shi, C. et al. Amur tiger stripes: Individual identification based on deep convolutional neural network. Integr. Zool. 15(6), 461–470 (2020).

    Article 

    Google Scholar 

  • 32.

    McCullough, D. R., Pei, K. C. J. & Wang, Y. Home range, activity patterns, and habitat relations of Reeves’ muntjacs in Taiwan. J. Wildl. Manag. 64(2), 430. https://doi.org/10.2307/3803241 (2000).

    Article 

    Google Scholar 

  • 33.

    Chatterjee, D., Sankar, K., Qureshi, Q., Malik, P. K. & Nigam, P. Ranging pattern and habitat use of sambar (Rusa unicolor) in Sariska Tiger Reserve, Rajasthan, western India. DSG Newsl. 26, 60–71 (2014).

    Google Scholar 

  • 34.

    Garza, S. J., Tabak, M. A., Miller, R. S., Farnsworth, M. L. & Burdett, C. L. Abiotic and biotic influences on home-range size of wild pigs (Sus scrofa). J. Mammal. 99(1), 97–107. https://doi.org/10.1093/jmammal/gyx154 (2018).

    Article 

    Google Scholar 

  • 35.

    Sankar, K. et al. Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, Central India. Trop. Conserv. Sci. 6(1), 50–69 (2013).

    Article 

    Google Scholar 

  • 36.

    Simcharoen, A. et al. Ecological Factors that influence sambar (Rusa unicolor) distribution and abundance in western Thailand: Implications for tiger conservation. Raffles Bull. Zool. 62, 100–106 (2014).

    Google Scholar 

  • 37.

    Mark Rayan, D. & Linkie, M. Managing threatened ungulates in logged-primary forest mosaics in Malaysia. PLoS ONE 15(12), e0243932. https://doi.org/10.1371/journal.pone.0243932 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS ONE 10(8), e0133771. https://doi.org/10.1371/journal.pone.0133771 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Ickes, K. Hyper-abundance of native wild pigs (Sus scrofa) in a lowland dipterocarp rain forest of Peninsular Malaysia. Biotropica 33(4), 682–690 (2001).

    Article 

    Google Scholar 

  • 40.

    Saunders, G. & McLeod, S. Predicting home range size from the body mass or population densities of feral pigs, sus scrofa (Artiodactyla: Suidae). Aust. J. Ecol. 24, 538–543 (1999).

    Article 

    Google Scholar 

  • 41.

    Abrams, P. A. & Matsuda, H. Prey adaptation as a cause of predator-prey cycles. Evolution 51, 1742–1750 (1997).

    Article 

    Google Scholar 

  • 42.

    Zhang, C., Minghai, Z. & Philip, S. Does prey density limit Amur tiger (Panthera tigris altaica) recovery in north-eastern China. Wildl. Biol. 19(4), 452–461 (2013).

    Article 

    Google Scholar 

  • 43.

    Majumder, A. et al. Home ranges of Bengal tiger (Panthera tigris tigris L.) in Pench Tiger Reserve, Madhya Pradesh, Central India. Wildl. Biol. Pract. 8, 36–49 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture