Brilli M, Mengoni A, Fondi M, Bazzicalupo M, Liò P, Fani R. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics. 2008;9:551.
Google Scholar
Dziewit L, Pyzik A, Szuplewska M, Matlakowska R, Mielnicki S, Wibberg D, et al. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. Front Microbiol. 2015;6:152.
Google Scholar
Matyar F, Kaya A, Dinçer S. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci Total Environ. 2008;407:279–85.
Google Scholar
Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA. 2008;105:10039–44.
Google Scholar
Heuer H, Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev. 2012;36:1083–104.
Google Scholar
Morozova D, Möhlmann D, Wagner D. Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig Life Evol Biosph. 2007;37:189–200.
Google Scholar
Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem functioning. Ecology. 2007;88:1386–94.
Google Scholar
Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol. 2011;162:346–61.
Google Scholar
Dutta H, Dutta A. The microbial aspect of climate change. Energy, Ecol Environ. 2016;1:209–32.
Google Scholar
Leplae R, Lima-Mendez G, Toussaint A. A first global analysis of plasmid encoded proteins in the ACLAME database. FEMS Microbiol Rev. 2006;30:980–94.
Google Scholar
Couturier M, Bex F, Bergquist PL, Maas WK. Identification and classification of bacterial plasmids. Microbiol Rev. 1988;52:375–95.
Google Scholar
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219–28.
Google Scholar
Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, et al. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol. 2007;73:1976–83.
Google Scholar
Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–7.
Google Scholar
Smalla K, Jechalke S, Top EM. Plasmid detection, characterization, and ecology. Microbiol Spectr. 2015;3:PLAS-0038-2014.
Top EM, Holben WE, Forney LJ. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol. 1995;61:1691–8.
Google Scholar
Sayler GS, Hooper SW, Layton AC, King JMH. Catabolic plasmids of environmental and ecological significance. Microb Ecol. 1990;19:1–20.
Google Scholar
Elsas JD, Bailey MJ. The ecology of transfer of mobile genetic elements. FEMS Microbiol Ecol. 2006;42:187–97.
Google Scholar
Barrón MD, La C, Merlin C, Guilloteau H, Montargès-Pelletier E, Bellanger X. Suspended materials in river waters differentially enrich class 1 integron- and IncP-1 plasmid-carrying bacteria in sediments. Front Microbiol. 2018;9:1443.
Google Scholar
Dziewit L, Bartosik D. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Front Microbiol. 2014;5:596.
Google Scholar
McCann CM, Christgen B, Roberts JA, Su JQ, Arnold KE, Gray ND, et al. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ Int. 2019;125:497–504.
Google Scholar
Nesme J, Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol. 2015;17:913–30.
Google Scholar
Sjölund M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis. 2008;14:70–72.
Google Scholar
Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One. 2015;10:e0069533.
Google Scholar
Hernández J, González-Acuña D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol. 2016;6:32112.
Google Scholar
Tan L, Li L, Ashbolt N, Wang X, Cui Y, Zhu X, et al. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Sci Total Environ. 2018;621:1176–84.
Google Scholar
Wang F, Stedtfeld RD, Kim OS, Chai B, Yang L, Stedtfeld TM, et al. Influence of soil characteristics and proximity to antarctic research stations on abundance of antibiotic resistance genes in soils. Environ Sci Technol. 2016;50:12621–9.
Google Scholar
Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, et al. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep. 2018;8:1291.
Google Scholar
Liebner S, Harder J, Wagner D. Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. Int Microbiol. 2008;11:195–202.
Google Scholar
Taş N, Prestat E, Wang S, Wu Y, Ulrich C, Kneafsey T, et al. Landscape topography structures the soil microbiome in Arctic polygonal tundra. Nat Commun. 2018;9:777.
Google Scholar
Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985;49:1–7.
Google Scholar
Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.
Google Scholar
Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One. 2013;8:e53608.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:2584.
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Google Scholar
Hammer DAT, Ryan PD, Hammer Ø, Harper DAT. Past: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.
Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.
Google Scholar
Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46:e35.
Google Scholar
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Google Scholar
Kahlke T, Ralph PJ. BASTA—taxonomic classification of sequences and sequence bins using last common ancestor estimations. Methods Ecol Evol. 2019;10:100–3.
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.
Google Scholar
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third Int AAAI Conf Weblogs Soc Media. San Jose, California, USA. 2009.
Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One. 2014;9:e98679.
Google Scholar
McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348–57.
Google Scholar
Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DG. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.
Google Scholar
Caswell TA, Droettboom M, Hunter J, Lee A, Firing E, Stansby D, et al. matplotlib/matplotlib: REL: v3.1.1. 2019.
Pham VHT, Kim J. Improvement for isolation of soil bacteria by using common culture media. J Pure Appl Microbiol. 2016;10:49–60.
Romaniuk K, Ciok A, Decewicz P, Uhrynowski W, Budzik K, Nieckarz M, et al. Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biol. 2018;41:1319–33.
Google Scholar
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.
Google Scholar
Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, et al. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol. 2005;71:2162–9.
Google Scholar
Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60.
Google Scholar
Ganzert L, Jurgens G, Munster U, Wagner D. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol. 2007;59:476–88.
Google Scholar
Bajerski F, Ganzert L, Mangelsdorf K, Padur L, Lipski A, Wagner D. Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield. Int J Syst Evol Microbiol. 2013;63:2666–71.
Google Scholar
Filippidou S, Wunderlin T, Junier T, Jeanneret N, Dorador C, Molina V, et al. A combination of extreme environmental conditions favor the prevalence of endospore-forming Firmicutes. Front Microbiol. 2016;7:1707.
Google Scholar
Kuramae EE, Yergeau E, Wong LC, Pijl AS, Veen JA, Kowalchuk GA. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol. 2012;79:12–24.
Google Scholar
Filippidou S, Junier T, Wunderlin T, Lo CC, Li PE, Chain PS, et al. Under-detection of endospore-forming Firmicutes in metagenomic data. Comput Struct Biotechnol J. 2015;13:299–306.
Google Scholar
Dziewit L, Cegielski A, Romaniuk K, Uhrynowski W, Szych A, Niesiobedzki P, et al. Plasmid diversity in arctic strains of Psychrobacter spp. Extremophiles. 2013;17:433–44.
Google Scholar
Mindlin S, Petrenko A, Kurakov A, Beletsky A, Mardanov A, Petrova M. Resistance of permafrost and modern Acinetobacter lwoffiistrains to heavy metals and arsenic revealed by genome analysis. Biomed Res Int. 2016;2016:3970831.
Google Scholar
Moghadam MS, Albersmeier A, Winkler A, Cimmino L, Rise K, Hohmann-Marriott MF, et al. Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics. 2016;17:117.
Google Scholar
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015;16:964.
Google Scholar
Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio. 2019;10:e00853–19.
Google Scholar
Bleich A, Fox JG. The mammalian microbiome and its importance in laboratory animal research. ILAR J. 2015;56:153–8.
Google Scholar
Grond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol. 2018;49:e01788.
Google Scholar
Anganova EV, Savchenkov MF, Stepanenko LA, Savilov ED. Microbiological monitoring of opportunistic Enterobacteriaceae of the Lena river. Gig Sanit. 2016;95:1124–8.
Tignat-Perrier R, Dommergue A, Thollot A, Keuschnig C, Magand O, Vogel TM, et al. Global airborne microbial communities controlled by surrounding landscapes and wind conditions. Sci Rep. 2019;9:14441.
Google Scholar
Mu C, Zhang F, Chen X, Ge S, Mu M, Jia L, et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 2019;161:54–60.
Google Scholar
Petrova M, Kurakov A, Shcherbatova N, Mindlin S. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. Microbiology. 2014;160:2253–63.
Google Scholar
Afouda P, Dubourg G, Levasseur A, Fournier P-E, Delerce J, Mediannikov O, et al. Culturing ancient bacteria carrying resistance genes from permafrost and comparative genomics with modern isolates. Microorganisms. 2020;8:1522.
Google Scholar
Source: Ecology - nature.com