in

Metaplasmidome-encoded functions of Siberian low-centered polygonal tundra soils

  • 1.

    Brilli M, Mengoni A, Fondi M, Bazzicalupo M, Liò P, Fani R. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics. 2008;9:551.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Dziewit L, Pyzik A, Szuplewska M, Matlakowska R, Mielnicki S, Wibberg D, et al. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. Front Microbiol. 2015;6:152.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Matyar F, Kaya A, Dinçer S. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci Total Environ. 2008;407:279–85.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA. 2008;105:10039–44.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Heuer H, Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev. 2012;36:1083–104.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Morozova D, Möhlmann D, Wagner D. Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig Life Evol Biosph. 2007;37:189–200.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem functioning. Ecology. 2007;88:1386–94.

    Article 

    Google Scholar 

  • 8.

    Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol. 2011;162:346–61.

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Dutta H, Dutta A. The microbial aspect of climate change. Energy, Ecol Environ. 2016;1:209–32.

    Article 

    Google Scholar 

  • 10.

    Leplae R, Lima-Mendez G, Toussaint A. A first global analysis of plasmid encoded proteins in the ACLAME database. FEMS Microbiol Rev. 2006;30:980–94.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Couturier M, Bex F, Bergquist PL, Maas WK. Identification and classification of bacterial plasmids. Microbiol Rev. 1988;52:375–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219–28.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, et al. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol. 2007;73:1976–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Smalla K, Jechalke S, Top EM. Plasmid detection, characterization, and ecology. Microbiol Spectr. 2015;3:PLAS-0038-2014.

  • 16.

    Top EM, Holben WE, Forney LJ. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol. 1995;61:1691–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Sayler GS, Hooper SW, Layton AC, King JMH. Catabolic plasmids of environmental and ecological significance. Microb Ecol. 1990;19:1–20.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Elsas JD, Bailey MJ. The ecology of transfer of mobile genetic elements. FEMS Microbiol Ecol. 2006;42:187–97.

    Article 

    Google Scholar 

  • 19.

    Barrón MD, La C, Merlin C, Guilloteau H, Montargès-Pelletier E, Bellanger X. Suspended materials in river waters differentially enrich class 1 integron- and IncP-1 plasmid-carrying bacteria in sediments. Front Microbiol. 2018;9:1443.

    Article 

    Google Scholar 

  • 20.

    Dziewit L, Bartosik D. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Front Microbiol. 2014;5:596.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    McCann CM, Christgen B, Roberts JA, Su JQ, Arnold KE, Gray ND, et al. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ Int. 2019;125:497–504.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Nesme J, Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol. 2015;17:913–30.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Sjölund M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis. 2008;14:70–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One. 2015;10:e0069533.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Hernández J, González-Acuña D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol. 2016;6:32112.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Tan L, Li L, Ashbolt N, Wang X, Cui Y, Zhu X, et al. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Sci Total Environ. 2018;621:1176–84.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Wang F, Stedtfeld RD, Kim OS, Chai B, Yang L, Stedtfeld TM, et al. Influence of soil characteristics and proximity to antarctic research stations on abundance of antibiotic resistance genes in soils. Environ Sci Technol. 2016;50:12621–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, et al. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep. 2018;8:1291.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Liebner S, Harder J, Wagner D. Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. Int Microbiol. 2008;11:195–202.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Taş N, Prestat E, Wang S, Wu Y, Ulrich C, Kneafsey T, et al. Landscape topography structures the soil microbiome in Arctic polygonal tundra. Nat Commun. 2018;9:777.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985;49:1–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One. 2013;8:e53608.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.

    Article 

    Google Scholar 

  • 35.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:2584.

    Article 

    Google Scholar 

  • 38.

    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Hammer DAT, Ryan PD, Hammer Ø, Harper DAT. Past: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.

    Google Scholar 

  • 40.

    Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46:e35.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Kahlke T, Ralph PJ. BASTA—taxonomic classification of sequences and sequence bins using last common ancestor estimations. Methods Ecol Evol. 2019;10:100–3.

    Article 

    Google Scholar 

  • 44.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third Int AAAI Conf Weblogs Soc Media. San Jose, California, USA. 2009.

  • 47.

    Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One. 2014;9:e98679.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DG. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Caswell TA, Droettboom M, Hunter J, Lee A, Firing E, Stansby D, et al. matplotlib/matplotlib: REL: v3.1.1. 2019.

  • 51.

    Pham VHT, Kim J. Improvement for isolation of soil bacteria by using common culture media. J Pure Appl Microbiol. 2016;10:49–60.

    Google Scholar 

  • 52.

    Romaniuk K, Ciok A, Decewicz P, Uhrynowski W, Budzik K, Nieckarz M, et al. Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biol. 2018;41:1319–33.

    Article 

    Google Scholar 

  • 53.

    Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, et al. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol. 2005;71:2162–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Ganzert L, Jurgens G, Munster U, Wagner D. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol. 2007;59:476–88.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Bajerski F, Ganzert L, Mangelsdorf K, Padur L, Lipski A, Wagner D. Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield. Int J Syst Evol Microbiol. 2013;63:2666–71.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Filippidou S, Wunderlin T, Junier T, Jeanneret N, Dorador C, Molina V, et al. A combination of extreme environmental conditions favor the prevalence of endospore-forming Firmicutes. Front Microbiol. 2016;7:1707.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Kuramae EE, Yergeau E, Wong LC, Pijl AS, Veen JA, Kowalchuk GA. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol. 2012;79:12–24.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Filippidou S, Junier T, Wunderlin T, Lo CC, Li PE, Chain PS, et al. Under-detection of endospore-forming Firmicutes in metagenomic data. Comput Struct Biotechnol J. 2015;13:299–306.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Dziewit L, Cegielski A, Romaniuk K, Uhrynowski W, Szych A, Niesiobedzki P, et al. Plasmid diversity in arctic strains of Psychrobacter spp. Extremophiles. 2013;17:433–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Mindlin S, Petrenko A, Kurakov A, Beletsky A, Mardanov A, Petrova M. Resistance of permafrost and modern Acinetobacter lwoffiistrains to heavy metals and arsenic revealed by genome analysis. Biomed Res Int. 2016;2016:3970831.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Moghadam MS, Albersmeier A, Winkler A, Cimmino L, Rise K, Hohmann-Marriott MF, et al. Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics. 2016;17:117.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015;16:964.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio. 2019;10:e00853–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Bleich A, Fox JG. The mammalian microbiome and its importance in laboratory animal research. ILAR J. 2015;56:153–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Grond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol. 2018;49:e01788.

    Article 

    Google Scholar 

  • 68.

    Anganova EV, Savchenkov MF, Stepanenko LA, Savilov ED. Microbiological monitoring of opportunistic Enterobacteriaceae of the Lena river. Gig Sanit. 2016;95:1124–8.

  • 69.

    Tignat-Perrier R, Dommergue A, Thollot A, Keuschnig C, Magand O, Vogel TM, et al. Global airborne microbial communities controlled by surrounding landscapes and wind conditions. Sci Rep. 2019;9:14441.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Mu C, Zhang F, Chen X, Ge S, Mu M, Jia L, et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 2019;161:54–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Petrova M, Kurakov A, Shcherbatova N, Mindlin S. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. Microbiology. 2014;160:2253–63.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Afouda P, Dubourg G, Levasseur A, Fournier P-E, Delerce J, Mediannikov O, et al. Culturing ancient bacteria carrying resistance genes from permafrost and comparative genomics with modern isolates. Microorganisms. 2020;8:1522.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture