in

Offspring survival changes over generations of captive breeding

  • 1.

    McGowan, P. J. K., Traylor-Holzer, K. & Leus, K. IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conserv. Lett. 10, 361–366 (2017).

    Article 

    Google Scholar 

  • 2.

    Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Lacy, R. C. Conservation Genetics in the Age of Genomics (eds Amato, G., DeSalle, R., Ryder, O. A. & Rosenbaum, H. C.) (Columbia Univ. Press, 2009).

  • 4.

    Frankham, R. Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 17, 325–333 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Jule, K. R., Leaver, L. A. & Lea, S. E. G. The effects of captive experience on reintroduction survival in carnivores: a review and analysis. Biol. Conserv. 141, 355–363 (2008).

    Article 

    Google Scholar 

  • 6.

    Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Lacy, R. C., Alaks, G. & Walsh, A. Evolution of Peromyscus leucopus mice in response to a captive environment. PLOS One 8, e72452 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Milot, E., Perrier, C., Papillon, L., Dodson, J. J. & Bernatchez, L. Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evol. Appl. 6, 472–485 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Frankham, R. Where are we in conservation genetics and where do we need to go? Conserv. Genet. 11, 661–663 (2010).

    Article 

    Google Scholar 

  • 10.

    Williams, S. E. & Hoffman, E. A. Minimizing genetic adaptation in captive breeding programs: a review. Biol. Conserv. 142, 2388–2400 (2009).

    Article 

    Google Scholar 

  • 11.

    Christie, M. R., Marine, M. L., Fox, S. E., French, R. A. & Blouin, M. S. A single generation of domestication heritably alters the expression of hundreds of genes. Nat. Commun. 7, 10676 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Farquharson, K. A., Hogg, C. J. & Grueber, C. E. A meta-analysis of birth-origin effects on reproduction in diverse captive environments. Nat. Commun. 9, 1055 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl Acad. Sci. USA 109, 238–242 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Matos, M. Maternal effects can inflate rate of adaptation to captivity. Proc. Natl Acad. Sci. USA 109, e2380 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Grueber, C. E., Laws, R. J., Nakagawa, S. & Jamieson, I. G. Inbreeding depression accumulation across life-history stages of the endangered takahe. Conserv. Biol. 24, 1617–1625 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Harrisson, K. A. et al. Lifetime fitness costs of inbreeding and being inbred in a critically endangered bird. Curr. Biol. 29, 2711–2717 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Boakes, E. H., Wang, J. & Amos, W. An investigation of inbreeding depression and purging in captive pedigreed populations. Heredity 98, 172–182 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Kennedy, E. S., Grueber, C. E., Duncan, R. P. & Jamieson, I. G. Severe inbreeding depression and no evidence of purging in an extremely inbred wild species – the Chatham Island black robin. Evolution 68, 987–995 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Frankham, R., Ballou J. D., Briscoe D. A. Introduction to Conservation Genetics 2nd edn, (Cambridge Univ. Press, 2010).

  • 20.

    Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst. 31, 139–162 (2000).

    Article 

    Google Scholar 

  • 21.

    Fa, J. E., Gusset, M., Flesness, N. & Conde, D. A. Zoos have yet to unveil their full conservation potential. Anim. Conserv. 17, 97–100 (2014).

    Article 

    Google Scholar 

  • 22.

    Martin, T. E., Lurbiecki, H., Joy, J. B. & Mooers, A. O. Mammal and bird species held in zoos are less endemic and less threatened than their close relatives not held in zoos. Anim. Conserv. 17, 89–96 (2014).

    Article 

    Google Scholar 

  • 23.

    Fisher, D. O. & Owens, I. P. F. The comparative method in conservation biology. Trends Ecol. Evol. 19, 391–398 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl Acad. Sci. USA 116, 9658–9664 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Species 360. Zoological Information Management System (ZIMS) http://zims.species360.org (2018).

  • 26.

    Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Packer, C., Tatar, M. & Collins, A. Reproductive cessation in female mammals. Nature 392, 807–811 (1998).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Farquharson, K. A., Hogg, C. J. & Grueber, C. E. Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species. J. Hered. 108, 488–495 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Hammerly, S. C., de la Cerda, D. A., Bailey, H. & Johnson, J. A. A pedigree gone bad: increased offspring survival after using DNA-based relatedness to minimize inbreeding in a captive population. Anim. Conserv. 19, 296–303 (2016).

    Article 

    Google Scholar 

  • 30.

    Woodworth, L. M., Montgomery, M. E., Briscoe, D. A. & Frankham, R. Rapid genetic deterioration in captive populations: causes and conservation implications. Conserv. Genet. 3, 277–288 (2002).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Fraser, D. J. et al. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol. Appl. 12, 1305–1317 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Frankham, R. & Loebel, D. A. Modeling problems in conservation genetics using captive Drosophila populations: rapid genetic adaptation to captivity. Zoo. Biol. 11, 333–342 (1992).

    Article 

    Google Scholar 

  • 33.

    Lacy, R. C. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).

    Article 

    Google Scholar 

  • 34.

    Mason, G. et al. Plastic animals in cages: behavioural flexibility and responses to captivity. Anim. Behav. 85, 1113–1126 (2013).

    Article 

    Google Scholar 

  • 35.

    Courtney Jones, S. K. & Byrne, P. G. What role does heritability play in transgenerational phenotypic responses to captivity? Implications for managing captive populations. Zoo. Biol. 36, 397–406 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Kokko, H. & Jennions, M. D. The Evolution of Parental Care (eds Royle, N. J., Smiseth, P. T. & Kölliker, M.) (Oxford Univ. Press, 2012).

  • 37.

    Grueber, C. E., Hogg, C. J., Ivy, J. A. & Belov, K. Impacts of early viability selection on management of inbreeding and genetic diversity in conservation. Mol. Ecol. 24, 1645–1653 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Wells, J. C. Commentary: paternal and maternal influences on offspring phenotype: the same, only different. Int J. Epidemiol. 43, 772–774 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Calkins, E. S., Fuller, T. K., Asa, C. S., Sievert, P. R. & Coonan, T. J. Factors influencing reproductive success and litter size in captive island foxes. J. Wildl. Manag. 77, 346–351 (2013).

    Article 

    Google Scholar 

  • 40.

    Hogg, C. J. et al. Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conserv. Genet. 16, 1465–1473 (2015).

    Article 

    Google Scholar 

  • 41.

    O’Grady, J. J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133, 42–51 (2006).

    Article 

    Google Scholar 

  • 42.

    Hoeck, P. E. A., Wolak, M. E., Switzer, R. A., Kuehler, C. M. & Lieberman, A. A. Effects of inbreeding and parental incubation on captive breeding success in Hawaiian crows. Biol. Conserv. 184, 357–364 (2015).

    Article 

    Google Scholar 

  • 43.

    Menotti-Raymond, M. & O’Brien, S. J. Dating the genetic bottleneck of the African cheetah. Proc. Natl Acad. Sci. USA 90, 3172–3176 (1993).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Brüniche-Olsen, A., Jones, M. E., Austin, J. J., Burridge, C. P. & Holland, B. R. Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biol. Lett. 10, 20140619 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Hedrick, P. W. & Fredrickson, R. J. Captive breeding and the reintroduction of Mexican and red wolves. Mol. Ecol. 17, 344–350 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Hogg, C. J. et al. Founder relationships and conservation management: empirical kinships reveal the effect on breeding programmes when founders are assumed to be unrelated. Anim. Conserv. 22, 348–361 (2019).

    Article 

    Google Scholar 

  • 47.

    Ivy, J. A. & Lacy, R. C. A comparison of strategies for selecting breeding pairs to maximize genetic diversity retention in managed populations. J. Hered. 103, 186–196 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Norman, A. J., Putnam, A. S. & Ivy, J. A. Use of molecular data in zoo and aquarium collection management: benefits, challenges, and best practices. Zoo. Biol. 38, 106–118 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Leberg, P. L. & Firmin, B. D. Role of inbreeding depression and purging in captive breeding and restoration programmes. Mol. Ecol. 17, 334–343 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Tennenhouse, E. M., Weladji, R. B., Holand, Ø. & Nieminen, M. Timing of reproductive effort differs between young and old dominant male reindeer. Ann. Zool. Fenn. 49, 152–160 (2012). 159.

    Article 

    Google Scholar 

  • 51.

    L’Italien, L. et al. Mating group size and stability in reindeer Rangifer tarandus: the effects of male characteristics, sex ratio and male age structure. Ethology 118, 783–792 (2012).

    Article 

    Google Scholar 

  • 52.

    Imlay, T. L., Steiner, J. C. & Bird, D. M. Age and experience affect the reproductive success of captive Loggerhead Shrike (Lanius ludovicianus) subspecies. Can. J. Zool. 95, 547–554 (2017).

    Article 

    Google Scholar 

  • 53.

    Henry, M. D., Hankerson, S. J., Siani, J. M., French, J. A. & Dietz, J. M. High rates of pregnancy loss by subordinates leads to high reproductive skew in wild golden lion tamarins (Leontopithecus rosalia). Horm. Behav. 63, 675–683 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Descamps, S., Boutin, S., Berteaux, D. & Gaillard, J.-M. Age-specific variation in survival, reproductive success and offspring quality in red squirrels: evidence of senescence. Oikos 117, 1406–1416 (2008).

    Article 

    Google Scholar 

  • 55.

    Ruiz-López, M. J., Espeso, G., Evenson, D. P., Roldan, E. R. S. & Gomendio, M. Paternal levels of DNA damage in spermatozoa and maternal parity influence offspring mortality in an endangered ungulate. Proc. R. Soc. B 277, 2541–2546 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Kellermann, V., Hoffmann, A. A., Overgaard, J., Loeschcke, V. & Sgrò, C. M. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc. R. Soc. B 285, 20180048 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Mellor, E., McDonald Kinkaid, H. & Mason, G. Phylogenetic comparative methods: harnessing the power of species diversity to investigate welfare issues in captive wild animals. Zoo. Biol. 37, 369–388 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Araki, H., Cooper, B. & Blouin, M. S. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol. Lett. 5, 621–624 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Christie, M. R., Ford, M. J. & Blouin, M. S. On the reproductive success of early-generation hatchery fish in the wild. Evol. Appl. 7, 883–896 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    González, A., Quevedo, M. Á. & Cuadrado, M. Comparison of reproductive success between parent-reared and hand-reared northern bald ibis Geronticus eremita in captivity during Proyecto Eremita. J. Zoo. Aquar. Res. 8, 246–252 (2020).

    Google Scholar 

  • 62.

    Lacy, R. C., Ballou, J. D. & Pollak, J. P. PMx: software package for demographic and genetic analysis and management of pedigreed populations. Methods Ecol. Evol. 3, 433–437 (2012).

    Article 

    Google Scholar 

  • 63.

    Ballou, J. D., Lacy R. C., Pollak J. P. PMx: software for demographic and genetic analysis and mangement of pedigreed populations. Chicago Zoological Society (2010).

  • 64.

    Ballou, J. Genetics and Conservation: a Reference for Managing Wild Animal and Plant Populations (eds Schonewald-Cox, C. M., Chambers, S. M., MacBryde, B., Thomas, W. L.) (The Benjamin/Cummings Publishing Company Inc., 1983).

  • 65.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2018).

  • 66.

    Tacutu, R. et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 67.

    Eager, C. D. standardize: tools for standardizing variables for regression in R. https://CRAN.R-project.org/package=standardize (2017).

  • 68.

    Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    Article 

    Google Scholar 

  • 69.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).

    Article 

    Google Scholar 

  • 71.

    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. https://CRAN.R-project.org/package=DHARMa (2019).

  • 72.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Barton, K. MuMIn: multi-model inference. R package https://CRAN.R-project.org/package=MuMIn (2018).

  • 75.

    IUCN. The IUCN Red List of Threatened Species. Version 2020-2 https://www.iucnredlist.org (2020).

  • 76.

    Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The future of the IoT (batteries not required)

    Startup improving chemical separations wins MIT $100K competition