in

The pest kill rate of thirteen natural enemies as aggregate evaluation criterion of their biological control potential of Tuta absoluta

  • 1.

    Malthus, T. An Essay on the Principle of Population (J. Johnson Publisher, London, 1798).

    Google Scholar 

  • 2.

    Nicholson, A. J. The balance of animal populations. J. Anim. Ecol. 2(1), 132–588 (1933).

    Article 

    Google Scholar 

  • 3.

    Andrewartha, H. G. & Birch, L. C. The distribution and abundance of animals (University of Chicago Press, 1954).

    Google Scholar 

  • 4.

    Turchin, P. Complex Population Dynamics: A Theoretical/Empirical Synthesis. Monographs in Population Biology Vol. 35 (Princeton University Press, 2003).

    MATH 

    Google Scholar 

  • 5.

    Bellows, T. S. & Hassell, M. P. Theories and mechanisms of natural population regulation. In Handbook of Biological Control (eds Bellows, T. S. & Fisher, T. W.) 17–44 (Academic Press, 1999).

    Google Scholar 

  • 6.

    Cock, M. J. W. et al. Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control?. Biocontrol 55, 199–218. https://doi.org/10.1007/s10526-009-9234-9 (2010).

    Article 

    Google Scholar 

  • 7.

    Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258. https://doi.org/10.1146/annurev-ento-031616-034933 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Ferracini, C. et al. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and South America. Biocontrol Sci. Technol. 29, 578–609. https://doi.org/10.1080/09583157.2019.1572711 (2019).

    Article 

    Google Scholar 

  • 9.

    Guedes, N.C., Picanco M. Tuta absoluta in South America: pest status, management & insecticide resistance. Proceedings of the EPPO/IOBC/FAO/NEPPO Joint International Symposium on Management of Tuta absoluta (tomato borer). Agadir, Marocco, Nov. 16–18, 2011, 15–16 (2011).

  • 10.

    Urbaneja, A., Monton, H. & Mollá, O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J. Appl. Entomol. 133, 292–296 (2009).

    Article 

    Google Scholar 

  • 11.

    Parra, J. R. P. & Zucchi, R. A. Trichogramma in Brazil: feasibility of use after 20 years of research. Neotrop. Entomol. 33, 271–281 (2004).

    Article 

    Google Scholar 

  • 12.

    Pérez-Hedo, M. & Urbaneja, A. The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In Advances in Insect Control and Resistance Management (eds Horowitz, A. R. & Ishaaya, I.) 121–138 (Springer, Dordrecht, 2016).

    Google Scholar 

  • 13.

    Mollá, O., Biondi, A., Alonso-Valiente, M. & Urbaneja, A. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. Biocontrol 59, 175–183. https://doi.org/10.1007/s10526-013-9553-8 (2014).

    Article 

    Google Scholar 

  • 14.

    Bajonero, J.G. Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae): adequação de uma dieta artificial e avaliação do seu controle biológico com Trichogramma pretiosum Riley em tomateiro. PhD Thesis, Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Sao Paolo, Brazil, p. 87 (2016).

  • 15.

    Calvo, F. J., Lorente, M. J., Stansly, P. A. & Belda, J. E. Pre-plant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisia tabaci in greenhouse tomato. Entomol. Exp. Appl. 143, 111–119 (2012).

    Article 

    Google Scholar 

  • 16.

    van Lenteren, J. C. et al. Pest kill rate as aggregate evaluation criterion to rank biological control agents: a case study with Neotropical predators of Tuta absoluta on tomato. Bull. Entomol. Res. 109, 812–820. https://doi.org/10.1017/S0007485319000130 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Tommasini, M. G., van Lenteren, J. C. & Burgio, G. Biological traits and predation capacity of four Orius species on two prey species. Bull. Insectol. 57, 79–94 (2004).

    Google Scholar 

  • 18.

    van Lenteren, J. C. Ecology: Cool Science, But Does It Help? 44 (Wageningen University, Wageningen, 2010).

    Google Scholar 

  • 19.

    Biondi, A., Desneux, N., Amiens-Desneux, E., Siscaro, G. & Zappalà, L. Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 106, 1638–1647 (2013).

    Article 

    Google Scholar 

  • 20.

    Bin, F., Vinson, S. B. Efficacy assessment in egg parasitoids (Hymenoptera): proposal for a unified terminology. In Trichogramma and other egg Parasitoids (eds. Wajnberg E. & Vinson S.B.). Proceedings 3rd International Symposium, San Antonio, Texas, pp. 175–179 (1990).

  • 21.

    Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276. https://doi.org/10.1146/annurev-ento-011118-111753 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Chailleux, A., Droui, A., Bearez, P. & Desneux, N. Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta. Ecol. Evol. 7, 8329–8337 (2017).

    Article 

    Google Scholar 

  • 23.

    Han, P. et al. Bottom-up efects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management. J. Pest Sci. 92, 1359–1370. https://doi.org/10.1007/s10340-018-1066-x (2019).

    Article 

    Google Scholar 

  • 24.

    Calvo, F. J., Bolckmans, K. & Belda, J. E. Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. Biocontrol 57, 809–817 (2012).

    Article 

    Google Scholar 

  • 25.

    van Lenteren, J. C., Bueno, V. H. P., Calvo, F. J., Calixto, A. M. & Montes, F. C. Comparative effectiveness and injury to tomato plants of three Neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 111, 1080–1086. https://doi.org/10.1093/jee/toy057 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Calvo, F. J., Soriano, J. D., Stansly, P. A. & Belda, J. E. Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae). Bull. Entomol. Res. 406, 502–511. https://doi.org/10.1017/S0007485316000183 (2016).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Crisol-Marinez, E. & van der Blom, J. Necremnus tutae (Hymenoptera, Eulophidae) is widespread and efficiently controls Tuta absoluta in tomato greenhouses in SE Spain. IOBC/WPRS Bull. 147, 22–29 (2019).

    Google Scholar 

  • 28.

    Castañé, C., van der Blom, J. & Nicot, P. C. Tomatoes. In Integrated Pest And Disease Management In Greenhouse Crops (eds Gullino, M. L. et al.) 487–511 (Springer, Switzerland, 2020). https://doi.org/10.1007/978-3-030-22304-5_17.

    Google Scholar 

  • 29.

    Knapp, M., Palevsky, E. & Rapisarda, C. Insect and mite pests. In Integrated Pest and Disease Management in Greenhouse Crops (eds Gullino, M. L. et al.) 101–144 (Springer, Switzerland, 2020). https://doi.org/10.1007/978-3-030-22304-5_17.

    Google Scholar 

  • 30.

    van Lenteren, J. C., Alomar, O., Ravensberg, W. J. & Urbaneja, A. Biological control agents for control of pests in greenhouses. In Integrated Pest And Disease Management In Greenhouse Crops (eds Gullino, M. L. et al.) 409–440 (Springer, Switzerland, 2020).

    Google Scholar 

  • 31.

    Pratissoli, D. & de Carvalho, J.D. Guia de Campo: Pragas da Cultura do Tomateiro. Alegre, ES: NUDEMAFI, Centro de Ciências Agrárias, UFES, 35pp. (Série Técnica/NUDEMAFI, ISSN 2359-4179; 1) (2015).

  • 32.

    Bodino, N., Ferracini, C. & Tavella, L. Functional response and age-specific foraging behaviour of Necremnus tutae and N. cosmopterix, native natural enemies of the invasive pest Tuta absoluta in Mediterranean area. J. Pest Sci. 92, 1467–1478. https://doi.org/10.1007/s10340-018-1025-6 (2019).

    Article 

    Google Scholar 

  • 33.

    Pérez-Hedo, M., Riahi, C. & Urbaneja, A. Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives. Pest Manag. Sci. 77, 33–42 (2021).

    Article 

    Google Scholar 

  • 34.

    Wheeler, A. G. Jr. & Krimmel, B. A. Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions and ecological implications. Annu. Rev. Entomol. 60, 393–414 (2015).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Bueno, V. H. P., Lins, J. C., Silva, D. B. & van Lenteren, J. C. Is predation of Tuta absoluta by three Neotropical mirid predators affected by tomato lines with different densities in glandular trichomes?. Arthropod-Plant Int. 13, 41–48. https://doi.org/10.1007/s11829-018-9658-1 (2019).

    Article 

    Google Scholar 

  • 36.

    Pérez-Hedo, M., Arias-Sanguino, A. M. & Urbaneja, A. Induced tomato plant resistance against Tetranychus urticae triggered by the phytophagy of Nesidiocoris tenuis. Front. Plant Sci. 9, 1419. https://doi.org/10.3389/fpls.2018.01419 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Barra-Bucarei, L., Devotto Moreno, L. & Iglesis, A. F. Biological control in Chile. In Biological Control in Latin America and the Caribbean: Its Rich History and Bright Future (eds van Lenteren, J. C. et al.) 108–123 (CAB International, Wallingford, 2020).

    Google Scholar 

  • 38.

    López, S. N., OrozcoMuñoz, A., Andorno, A. V., Cuello, E. M. & Cagnotti, C. L. Predatory capacity of Tupiocoris cucurbitaceus (Hemiptera Miridae) on several pests of tomato. Bull. Insectol. 72, 201–205 (2019).

    Google Scholar 

  • 39.

    Fauvel, G., Malausa, J. C. & Kaspar, B. Etude en laboratoire des principales caracteristiques biologiques de Macrolophus caliginosus (Heteroptera: Miridae). Entomophaga 32, 529–543 (1987).

    Article 

    Google Scholar 

  • 40.

    Mollá, O., Montón, H., Vanaclocha, P., Beitia, F. & Urbaneja, A. Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. IOBC/WPRS Bull. 49, 203–208 (2009).

    Google Scholar 

  • 41.

    Sánchez, J. A., Lacasa, A., Arnó, J., Castañé, C. & Alomar, O. Life history parameters for Nesidiocoris tenuis (Reuter) (Het., Miridae) under different temperature regimes. J. Appl. Entomol. 133, 125–132. https://doi.org/10.1111/j.1439-0418.2008.01342.x (2009).

    Article 

    Google Scholar 

  • 42.

    Sánchez, J. A., La-Spina, M. & Lacasa, A. Numerical response of Nesidiocoris tenuis (Hemiptera: Miridae) preying on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops. Eur. J. Entomol. 11, 387–395 (2014).

    Article 

    Google Scholar 

  • 43.

    Arnó, J. et al. Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC/WPRS Bull. 49, 203–208 (2009).

    Google Scholar 

  • 44.

    Mahdavi, T. S., Madadi, H. & Biondi, A. Predation and reproduction of the generalist predator Nabis pseudoferus preying on Tuta absoluta. Entomol. Exp. Appl. 168, 732–741. https://doi.org/10.1111/eea.12975 (2020).

    Article 

    Google Scholar 

  • 45.

    Salas Gervassio, N. G., Aquino, D., Vallina, C., Biondi, A. & Luna, M. G. A re-examination of Tuta absoluta parasitoids in South America for optimized biological control. J. Pest Sci. 92, 1343–1357. https://doi.org/10.1007/s10340-018-01078-1 (2019).

    Article 

    Google Scholar 

  • 46.

    Idriss, G. E. A., Mohamed, S. A., Khamis, F., Du Plessis, H. & Ekesi, S. Biology and performance of two indigenous larval parasitoids on Tuta absoluta (Lepidoptera: Gelechiidae) in Sudan. Biocontrol Sci. Technol. 28, 614–628. https://doi.org/10.1080/09583157.2018.1477117 (2018).

    Article 

    Google Scholar 

  • 47.

    Cagnotti, C. L., Riquelme Virgala, M., Botto, E. N. & López, S. N. Dispersion and persistence of Trichogrammatoidea bactrae (Nagaraja) over Tuta absoluta (Meyrick), in tomato greenhouses. Neotrop. Entomol. 47, 553–559. https://doi.org/10.1007/s13744-017-0573-4 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Pratissoli, D. Bioecologia de Trichogramma pretiosum Riley, 1879, nas traças, Scrobipalpuloides absoluta (Meyrick, 1917) e Phthorimaea operculella (Zeller, 1873), em tomateiro. Piracicaba: Doutorado – Escola Superior de Agricultura “Luiz de Queiroz”/USP, p. 153 (1995).

  • 49.

    Pratissoli, D. & Parra, J. R. P. Fertility life table of Trichogramma pretiosum (Hym., Trichogrammatidae) in eggs of Tuta absoluta and Phthorimaea operculella (Lep., Gelechiidae) at different temperatures. J. Appl. Entomol. 124, 339–342 (2000).

    Article 

    Google Scholar 

  • 50.

    Riquelme Virgala, M. B. & Botto, E. N. Estudios biológicos de Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae), parasitoide de huevos de Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Neotrop. Entomol. 36, 612–617 (2010).

    Article 

    Google Scholar 

  • 51.

    Aigbedion-Atalor, P.O, Abuelgasim Mohamed, S., Hill, M.P., Zalucki, M.P., Azrag, A.G.A., Srinivasan, R. & Ekesi, S. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control. Preprint at https://doi.org/https://doi.org/10.1016/j.biocontrol.2020.104215 (2020).

  • 52.

    Guleria, P., Sharma, P. L., Verma, S. C. & Chandel, R. S. Life history traits and host-killing rate of Neochrysocharis formosa on Tuta absoluta. Biocontrol 65, 401–411. https://doi.org/10.1007/s10526-020-10016-z (2020).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Calvo, F. J., Soriano, J. D., Bolckmans, K. & Belda, J. E. Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta. Biocontrol Sci. Technol. 23, 803–815 (2013).

    Article 

    Google Scholar 

  • 54.

    Nieves, E. L., Pereyra, P. C., Luna, M. G., Medone, P. & Sánchez, N. E. Laboratory population parameters and field impact of the larval endoparasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on its host Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops in Argentina. J. Econ. Entomol. 108, 1553–1559 (2015).

    Article 

    Google Scholar 

  • 55.

    Luna, M. G., Wada, V. & Sánchez, N. E. Biology of Dineulophus phtorimaeae (Hymenoptera: Eulophidae), and field interaction with Pseudapanteles dignus (Hymenoptera: Braconidae), larval parasitoids of Tuta absoluta (Lepidoptera: Gelechiidae) in tomato. Ann. Entomol. Soc. Am. 106, 936–942 (2010).

    Article 

    Google Scholar 

  • 56.

    Savino, V., Coviella, C. E. & Luna, M. G. Reproductive biology and functional response of Dineulophus phtorimaeae a natural enemy of the tomato moth Tuta absoluta. J. Insect Sci. 12, 1–14 (2012).

    Article 

    Google Scholar 

  • 57.

    Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17, 15–26 (1948).

    Article 

    Google Scholar 

  • 58.

    Lotka, A. J. Relation between birth rates and death rates. Science 26, 21–22 (1907).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 59.

    Lotka, A. J. & Sharpe, F. R. A problem in age distribution. Philos. Mag. 6(21), 339–345 (1911).

    MATH 

    Google Scholar 

  • 60.

    Dalgaard, P. Introductory Statistics With R 2nd edn. (Springer, New York, 2008).

    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    The future of the IoT (batteries not required)

    Startup improving chemical separations wins MIT $100K competition