He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).
Google Scholar
Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).
Google Scholar
Hoegh-Guldberg, O. et al. Impacts of 1.5°C Global Warming on Natural and Human Systems. in Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, (ed. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. W.) 175–311 (2018).
Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Prospect. 41, 2928–2933 (2014).
Google Scholar
Westerling, A. L. R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).
Google Scholar
Bailey, R. & Yeo, J. The Burning Issue (Marsh & McLennan Insights, 2019).
Province of British Columbia. 2018 Wildfire Season Summary. 2018 Wildfire Season Summary (2019). https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-history/wildfire-season-summary?keyword=total&keyword=area&keyword=burned&keyword=by&keyword=wildfire&keyword=2018.
Cal Fire. https://www.fire.ca.gov/incidents/2018/. https://www.fire.ca.gov/incidents/2018/ (2020). https://www.fire.ca.gov/incidents/2018/.
McCullough, I. et al. Do lakes feel the burn? Ecological consequences of increasing exposure of lakes to fire in the continental US. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14732 (2019).
Google Scholar
Westerling, A. L. et al. Climate change and growth scenarios for California wildfire. Clim. Change 109, 445–463 (2011).
Google Scholar
Nagy, C. R., Fusco, E., Bradley, B., Abatzoglou, J. T. & Balch, J. Human-related ignitions increase the number of large wildfires across U.S. Ecoregions. Fire 1, 1–14 (2018).
Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. U. S. A. 114, 2946–2951 (2017).
Google Scholar
Radeloff, V. C. et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. U. S. A. 115, 3314–3319 (2018).
Google Scholar
Wright, R. F. The Impact of Forest Fire on the Nutrient Influxes to Small Lakes in Northeastern Minnesota Author (s): Richard F . Wright Published by : Ecological Society of America Stable URL : http://www.jstor.org/stable/1936180 THE IMPACT OF FOREST FIRE ON THE NUT. 57, 649–663 (1976).
Carignan, R., D’Arcy, P. & Lamontagne, S. Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Can. J. Fish. Aquat. Sci. 57, 105–117 (2000).
Google Scholar
Tecle, A. & Neary, D. Water quality impacts of forest fires. J. Pollut. Eff. Control 03, (2015).
Abney, R. B., Sanderman, J., Johnson, D., Fogel, M. L. & Berhe, A. A. Post-wildfire Erosion in mountainous terrain leads to rapid and major redistribution of soil organic carbon. Front. Earth Sci. 5, 1–16 (2017).
Google Scholar
Williamson, C. E. et al. Sentinel responses to droughts, wildfires, and floods: Effects of UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 14, 102–109 (2016).
Google Scholar
Goldman, C. R., Jassby, A. D. & De Amezaga, E. Forest fires, atmospheric deposition and primary productivity at Lake Tahoe, California-Nevada. Int. Vereinigung Theor. Angew. Limnol. Verhandlungen 24, 499–503 (1990).
Allen, E. W., Prepas, E. E., Gabos, S., Strachan, W. & Chen, W. Surface water chemistry of burned and undisturbed watersheds on the Boreal Plain: An ecoregion approach. J. Environ. Eng. Sci. 2, S73–S86 (2003).
Google Scholar
Earl, S. R. & Blinn, D. W. Effects of wildfire ash on water chemistry and biota in south-western U.S.A. streams. Freshw. Biol. 48, 1015–1030 (2003).
Google Scholar
Overholt, E. P., Rose, K. C., Williamson, C. E., Fischer, J. M. & Cabrol, N. A. Behavioral responses of freshwater calanoid copepods to the presence of ultraviolet radiation: Avoidance and attraction. J. Plankton Res. 38, 16–26 (2015).
Google Scholar
Urmy, S. S. et al. Vertical redistribution of zooplankton in an oligotrophic lake associated with reduction in ultraviolet radiation by wildfire smoke. Geophys. Res. Lett. 43, 3746–3753 (2016).
Google Scholar
Williamson, C. E. et al. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 18, 717–746 (2019).
Google Scholar
Aguilera, R., Gershunov, A., Ilango, S. D., Guzman-Morales, J. & Benmarhnia, T. Santa ana winds of Southern California impact PM2.5 with and without smoke from wildfires. GeoHealth 4, 1–9 (2020).
Google Scholar
Liu, J. C. et al. Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural counties. Epidemiology 28, 77–85 (2017).
Google Scholar
Environmental Protection Agency. Air Quality Index, A Guide to Air Quality and Your Health. Encyclopedia of Quality of Life and Well-Being Research (2014).
Melack, J. M., Sadro, S., Sickman, S. & Dozier, J. Lakes and Watersheds in the Sierra Nevada of California: Responses to Environmental Change. (University of California Press, 2020). https://doi.org/10.2307/j.ctv17hm9sr
Goldman, C. R., Jassby, A. & Powell, T. Interannual fluctuations in primary production: Meteorological forcing at two subalpine lakes. Limnol. Oceanogr. 34, 310–323 (1989).
Google Scholar
Jassby, A. D., Powell, T. M. & Goldman, C. R. Interannual fluctuations in primary production: Direct physical effects and the trophic cascade at Castle Lake, California. Limnol. Oceanogr. 35, 1021–1038 (1990).
Google Scholar
Park, S., Brett, M. T., Müller-Solger, A. & Goldman, C. R. Climatic forcing and primary productivity in a subalpine lake: Interannual variability as a natural experiment. Limnol. Oceanogr. 49, 614–619 (2004).
Google Scholar
Winslow, L. et al. Package ‘ rLakeAnalyzer ’. Lake Physics Tools. (2019).
Read, J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 26, 1325–1336 (2011).
Google Scholar
Goldman, C. R. Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultra-oligotrophic Lake Tahoe Califomia-Nevada. Limnol. Oceanogr. 33, 1321–1333 (1988).
Google Scholar
Marker, A. F. H. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw. Biol. 2, 361–385 (1972).
Google Scholar
Redfield, G. W. & Goldman, C. R. Diel vertical migration and dynamics of zooplankton biomass in the epilimnion of Castle Lake, California. Verhandlungen des Int. Verein Limnol. 20, 381–387 (1978).
Elser, J. J. et al. Factors associated with interannual and intraannual variation in nutrient limitation of phytoplankton growth in Castle Lake, California. Can. J. Fish. Aquat. Sci. 52, 93–104 (1995).
Google Scholar
Huovinen, P. S., Brett, M. T. & Goldman, C. R. Temporal and vertical dynamics of phytoplankton net growth in Castle Lake, California. J. Plankton Res. 21, 373–385 (1999).
Google Scholar
Maberly, S. C., King, L., Dent, M. M., Jones, R. I. & Gibson, C. E. Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshw. Biol. 47, 2136–2152 (2002).
Google Scholar
R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, 2009).
Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2021). https://cran.r-project.org/package=emmeans.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2020). https://cran.r-project.org/package=nlme.
Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online 1–15 (2017). https://doi.org/10.1002/9781118445112.stat07841
Oksanen, J. F. et al. vegan: Community Ecology Package. (2019). https://cran.r-project.org/package=vegan%0A.
Environmental Systems Research Institute. ArcGIS 10.8.1. (2020). https://www.esri.com/en-us/home.
Inkscape Project. Inkscape. (2020). https://inkscape.org.
Bachmann, R. W. & Goldman, C. R. Hypolimnetic heating in Castle Lake. California. Limnol. Oceanogr. 10, 233–239 (1965).
Google Scholar
Kochanski, A. K. et al. Modeling wildfire smoke feedback mechanisms using a coupled fire-atmosphere model with a radiatively active aerosol scheme. J. Geophys. Res. Atmos. 124, 9099–9116 (2019).
Google Scholar
David, A. T., Asarian, J. E. & Lake, F. K. Wildfire smoke cools summer river and stream water temperatures. Water Resour. Res. 54, 7273–7290 (2018).
Google Scholar
Moeller, R. Contribution of ultraviolet radiation (UV-A, UV-B) to photoinhibition of epilimnetic phytoplankton in lakes of differing UV transparency. Arch. Hydrobiol. Beihefte Ergebnisse Limnol. 43, 157–170 (1994).
Morris, D. P. & Hargreaves, B. R. The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol. Oceanogr. 42, 239–249 (1997).
Google Scholar
Meyers, P. A. & Lallier-Vergès, E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J. Paleolimnol. 21, 345–372 (1999).
Google Scholar
Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using d 13 C and C/N ratios in organic material. (2005). https://doi.org/10.1016/j.earscirev.2005.10.003
Maxwell, T. M., Silva, L. C. R. & Horwath, W. R. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon–water relations. Proc. Natl. Acad. Sci. U. S. A. 115, E4219–E4226 (2018).
Google Scholar
Bao, H., Niggemann, J., Luo, L., Dittmar, T. & Kao, S. J. Aerosols as a source of dissolved black carbon to the ocean. Nat. Commun. 8, 1–7 (2017).
Google Scholar
Zhang, Y. et al. Dissolved organic carbon in glaciers of the southeastern Tibetan Plateau: Insights into concentrations and possible sources. PLoS ONE 13, e0205414 (2018).
Google Scholar
Solomon, C. T. et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems 18, 376–389 (2015).
Google Scholar
Banse, K. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size—A review. J. Phycol. 12, 135–140 (1976).
Gao, K., Li, G., Helbling, E. W. & Villafañe, V. E. Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea. Photochem. Photobiol. 83, 802–809 (2007).
Google Scholar
Häder, D. P., Helbling, E. W., Williamson, C. E. & Worrest, R. C. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 10, 242–260 (2011).
Google Scholar
Priscu, J. C. & Goldman, C. R. Seasonal dynamics of the deep-chlorophyll maximum in Castle Lake, California. Can. J. Fish. Aquat. Sci. 40, 208–214 (1983).
Google Scholar
Leach, T. H. et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 63, 628–646 (2018).
Google Scholar
Priscu, J. C. & Goldman, C. R. The effect of temperature on photosynthetic and respiratory electron transport system activity in the shallow and deep-living phytoplankton of a subalpine lake. Freshw. Biol. 14, 143–155 (1984).
Google Scholar
Modenutti, B. E. et al. Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnol. Oceanogr. 58, 1165–1175 (2013).
Google Scholar
Horne, J. A. & Goldman, C. R. Zooplankton and zoobenthos. in Limnology 265–298 (McGraw-Hill Inc, 1994).
Caldwell, T. J., Chandra, S., Feher, K., Simmons, J. B. & Hogan, Z. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use. Glob. Chang. Biol. 26, 5475–5491 (2020).
Google Scholar
Elser, J. J., Luecke, C., Brett, M. T. & Goldman, C. R. Effects of food web compensation after manipulation of rainbow trout in an oligotrophic lake. Ecology 76, 52–69 (1995).
Google Scholar
Cohen, J. H. & Forward Jr., R. B. Zooplankton diel vertical migration-a review of proximate control. in Oceanography and marine biology: An annual review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) 89–122 (Taylor & Francis, 2009).
Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridgec, J. K. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011).
Google Scholar
Storz, U. C. & Paul, R. J. Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. J. Comp. Physiol. Sens. Neural Behav. Physiol. 183, 709–717 (1998).
Google Scholar
National Interagency Fire Center. Total Wildland Fires and Acres (1983–2020). (2021). https://www.nifc.gov/fire-information/statistics/wildfires.
MTBS. https://www.mtbs.gov/. MTBS (2020). https://www.mtbs.gov/.
Source: Ecology - nature.com