in

Smoke from regional wildfires alters lake ecology

  • 1.

    He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).

    Article 

    Google Scholar 

  • 2.

    Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).

    Article 

    Google Scholar 

  • 3.

    Hoegh-Guldberg, O. et al. Impacts of 1.5°C Global Warming on Natural and Human Systems. in Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, (ed. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. W.) 175–311 (2018).

  • 4.

    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Prospect. 41, 2928–2933 (2014).

    ADS 

    Google Scholar 

  • 5.

    Westerling, A. L. R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).

    Article 

    Google Scholar 

  • 6.

    Bailey, R. & Yeo, J. The Burning Issue (Marsh & McLennan Insights, 2019).

    Google Scholar 

  • 7.

    Province of British Columbia. 2018 Wildfire Season Summary. 2018 Wildfire Season Summary (2019). https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-history/wildfire-season-summary?keyword=total&keyword=area&keyword=burned&keyword=by&keyword=wildfire&keyword=2018.

  • 8.

    Cal Fire. https://www.fire.ca.gov/incidents/2018/. https://www.fire.ca.gov/incidents/2018/ (2020). https://www.fire.ca.gov/incidents/2018/.

  • 9.

    McCullough, I. et al. Do lakes feel the burn? Ecological consequences of increasing exposure of lakes to fire in the continental US. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14732 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Westerling, A. L. et al. Climate change and growth scenarios for California wildfire. Clim. Change 109, 445–463 (2011).

    Article 

    Google Scholar 

  • 11.

    Nagy, C. R., Fusco, E., Bradley, B., Abatzoglou, J. T. & Balch, J. Human-related ignitions increase the number of large wildfires across U.S. Ecoregions. Fire 1, 1–14 (2018).

    Google Scholar 

  • 12.

    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. U. S. A. 114, 2946–2951 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Radeloff, V. C. et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. U. S. A. 115, 3314–3319 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Wright, R. F. The Impact of Forest Fire on the Nutrient Influxes to Small Lakes in Northeastern Minnesota Author (s): Richard F . Wright Published by : Ecological Society of America Stable URL : http://www.jstor.org/stable/1936180 THE IMPACT OF FOREST FIRE ON THE NUT. 57, 649–663 (1976).

  • 15.

    Carignan, R., D’Arcy, P. & Lamontagne, S. Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Can. J. Fish. Aquat. Sci. 57, 105–117 (2000).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Tecle, A. & Neary, D. Water quality impacts of forest fires. J. Pollut. Eff. Control 03, (2015).

  • 17.

    Abney, R. B., Sanderman, J., Johnson, D., Fogel, M. L. & Berhe, A. A. Post-wildfire Erosion in mountainous terrain leads to rapid and major redistribution of soil organic carbon. Front. Earth Sci. 5, 1–16 (2017).

    Article 

    Google Scholar 

  • 18.

    Williamson, C. E. et al. Sentinel responses to droughts, wildfires, and floods: Effects of UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 14, 102–109 (2016).

    Article 

    Google Scholar 

  • 19.

    Goldman, C. R., Jassby, A. D. & De Amezaga, E. Forest fires, atmospheric deposition and primary productivity at Lake Tahoe, California-Nevada. Int. Vereinigung Theor. Angew. Limnol. Verhandlungen 24, 499–503 (1990).

    Google Scholar 

  • 20.

    Allen, E. W., Prepas, E. E., Gabos, S., Strachan, W. & Chen, W. Surface water chemistry of burned and undisturbed watersheds on the Boreal Plain: An ecoregion approach. J. Environ. Eng. Sci. 2, S73–S86 (2003).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Earl, S. R. & Blinn, D. W. Effects of wildfire ash on water chemistry and biota in south-western U.S.A. streams. Freshw. Biol. 48, 1015–1030 (2003).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Overholt, E. P., Rose, K. C., Williamson, C. E., Fischer, J. M. & Cabrol, N. A. Behavioral responses of freshwater calanoid copepods to the presence of ultraviolet radiation: Avoidance and attraction. J. Plankton Res. 38, 16–26 (2015).

    Article 

    Google Scholar 

  • 23.

    Urmy, S. S. et al. Vertical redistribution of zooplankton in an oligotrophic lake associated with reduction in ultraviolet radiation by wildfire smoke. Geophys. Res. Lett. 43, 3746–3753 (2016).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Williamson, C. E. et al. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 18, 717–746 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Aguilera, R., Gershunov, A., Ilango, S. D., Guzman-Morales, J. & Benmarhnia, T. Santa ana winds of Southern California impact PM2.5 with and without smoke from wildfires. GeoHealth 4, 1–9 (2020).

    Article 

    Google Scholar 

  • 26.

    Liu, J. C. et al. Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural counties. Epidemiology 28, 77–85 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Environmental Protection Agency. Air Quality Index, A Guide to Air Quality and Your Health. Encyclopedia of Quality of Life and Well-Being Research (2014).

  • 28.

    Melack, J. M., Sadro, S., Sickman, S. & Dozier, J. Lakes and Watersheds in the Sierra Nevada of California: Responses to Environmental Change. (University of California Press, 2020). https://doi.org/10.2307/j.ctv17hm9sr

  • 29.

    Goldman, C. R., Jassby, A. & Powell, T. Interannual fluctuations in primary production: Meteorological forcing at two subalpine lakes. Limnol. Oceanogr. 34, 310–323 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Jassby, A. D., Powell, T. M. & Goldman, C. R. Interannual fluctuations in primary production: Direct physical effects and the trophic cascade at Castle Lake, California. Limnol. Oceanogr. 35, 1021–1038 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Park, S., Brett, M. T., Müller-Solger, A. & Goldman, C. R. Climatic forcing and primary productivity in a subalpine lake: Interannual variability as a natural experiment. Limnol. Oceanogr. 49, 614–619 (2004).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Winslow, L. et al. Package ‘ rLakeAnalyzer ’. Lake Physics Tools. (2019).

  • 33.

    Read, J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 26, 1325–1336 (2011).

    Article 

    Google Scholar 

  • 34.

    Goldman, C. R. Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultra-oligotrophic Lake Tahoe Califomia-Nevada. Limnol. Oceanogr. 33, 1321–1333 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Marker, A. F. H. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw. Biol. 2, 361–385 (1972).

    Article 

    Google Scholar 

  • 36.

    Redfield, G. W. & Goldman, C. R. Diel vertical migration and dynamics of zooplankton biomass in the epilimnion of Castle Lake, California. Verhandlungen des Int. Verein Limnol. 20, 381–387 (1978).

    Google Scholar 

  • 37.

    Elser, J. J. et al. Factors associated with interannual and intraannual variation in nutrient limitation of phytoplankton growth in Castle Lake, California. Can. J. Fish. Aquat. Sci. 52, 93–104 (1995).

    Article 

    Google Scholar 

  • 38.

    Huovinen, P. S., Brett, M. T. & Goldman, C. R. Temporal and vertical dynamics of phytoplankton net growth in Castle Lake, California. J. Plankton Res. 21, 373–385 (1999).

    Article 

    Google Scholar 

  • 39.

    Maberly, S. C., King, L., Dent, M. M., Jones, R. I. & Gibson, C. E. Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshw. Biol. 47, 2136–2152 (2002).

    Article 

    Google Scholar 

  • 40.

    R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).

  • 41.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, 2009).

  • 42.

    Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2021). https://cran.r-project.org/package=emmeans.

  • 43.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2020). https://cran.r-project.org/package=nlme.

  • 44.

    Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online 1–15 (2017). https://doi.org/10.1002/9781118445112.stat07841

  • 45.

    Oksanen, J. F. et al. vegan: Community Ecology Package. (2019). https://cran.r-project.org/package=vegan%0A.

  • 46.

    Environmental Systems Research Institute. ArcGIS 10.8.1. (2020). https://www.esri.com/en-us/home.

  • 47.

    Inkscape Project. Inkscape. (2020). https://inkscape.org.

  • 48.

    Bachmann, R. W. & Goldman, C. R. Hypolimnetic heating in Castle Lake. California. Limnol. Oceanogr. 10, 233–239 (1965).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Kochanski, A. K. et al. Modeling wildfire smoke feedback mechanisms using a coupled fire-atmosphere model with a radiatively active aerosol scheme. J. Geophys. Res. Atmos. 124, 9099–9116 (2019).

    ADS 
    Article 

    Google Scholar 

  • 50.

    David, A. T., Asarian, J. E. & Lake, F. K. Wildfire smoke cools summer river and stream water temperatures. Water Resour. Res. 54, 7273–7290 (2018).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Moeller, R. Contribution of ultraviolet radiation (UV-A, UV-B) to photoinhibition of epilimnetic phytoplankton in lakes of differing UV transparency. Arch. Hydrobiol. Beihefte Ergebnisse Limnol. 43, 157–170 (1994).

    Google Scholar 

  • 52.

    Morris, D. P. & Hargreaves, B. R. The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol. Oceanogr. 42, 239–249 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Meyers, P. A. & Lallier-Vergès, E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J. Paleolimnol. 21, 345–372 (1999).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using d 13 C and C/N ratios in organic material. (2005). https://doi.org/10.1016/j.earscirev.2005.10.003

  • 55.

    Maxwell, T. M., Silva, L. C. R. & Horwath, W. R. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon–water relations. Proc. Natl. Acad. Sci. U. S. A. 115, E4219–E4226 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Bao, H., Niggemann, J., Luo, L., Dittmar, T. & Kao, S. J. Aerosols as a source of dissolved black carbon to the ocean. Nat. Commun. 8, 1–7 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Zhang, Y. et al. Dissolved organic carbon in glaciers of the southeastern Tibetan Plateau: Insights into concentrations and possible sources. PLoS ONE 13, e0205414 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Solomon, C. T. et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems 18, 376–389 (2015).

    Article 

    Google Scholar 

  • 59.

    Banse, K. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size—A review. J. Phycol. 12, 135–140 (1976).

    Google Scholar 

  • 60.

    Gao, K., Li, G., Helbling, E. W. & Villafañe, V. E. Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea. Photochem. Photobiol. 83, 802–809 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Häder, D. P., Helbling, E. W., Williamson, C. E. & Worrest, R. C. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 10, 242–260 (2011).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 62.

    Priscu, J. C. & Goldman, C. R. Seasonal dynamics of the deep-chlorophyll maximum in Castle Lake, California. Can. J. Fish. Aquat. Sci. 40, 208–214 (1983).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Leach, T. H. et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 63, 628–646 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 64.

    Priscu, J. C. & Goldman, C. R. The effect of temperature on photosynthetic and respiratory electron transport system activity in the shallow and deep-living phytoplankton of a subalpine lake. Freshw. Biol. 14, 143–155 (1984).

    Article 

    Google Scholar 

  • 65.

    Modenutti, B. E. et al. Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnol. Oceanogr. 58, 1165–1175 (2013).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Horne, J. A. & Goldman, C. R. Zooplankton and zoobenthos. in Limnology 265–298 (McGraw-Hill Inc, 1994).

  • 67.

    Caldwell, T. J., Chandra, S., Feher, K., Simmons, J. B. & Hogan, Z. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use. Glob. Chang. Biol. 26, 5475–5491 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Elser, J. J., Luecke, C., Brett, M. T. & Goldman, C. R. Effects of food web compensation after manipulation of rainbow trout in an oligotrophic lake. Ecology 76, 52–69 (1995).

    Article 

    Google Scholar 

  • 69.

    Cohen, J. H. & Forward Jr., R. B. Zooplankton diel vertical migration-a review of proximate control. in Oceanography and marine biology: An annual review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) 89–122 (Taylor & Francis, 2009).

  • 70.

    Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridgec, J. K. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Storz, U. C. & Paul, R. J. Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. J. Comp. Physiol. Sens. Neural Behav. Physiol. 183, 709–717 (1998).

    Article 

    Google Scholar 

  • 72.

    National Interagency Fire Center. Total Wildland Fires and Acres (1983–2020). (2021). https://www.nifc.gov/fire-information/statistics/wildfires.

  • 73.

    MTBS. https://www.mtbs.gov/. MTBS (2020). https://www.mtbs.gov/.


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East