in

Mapping marine debris encountered by albatrosses tracked over oceanic waters

  • 1.

    Cózar, A. et al. Plastic debris in the open ocean. Proc. Nat. Acad. Sci. USA 111, 10239–10244. https://doi.org/10.1073/pnas.1314705111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Lavers, J. L., Dicks, L., Dicks, M. R. & Finger, A. Significant plastic accumulation on the Cocos (Keeling) Islands, Australia. Sci. Rep. 9, 7102. https://doi.org/10.1038/s41598-019-43375-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Cózar, A. et al. The arctic ocean as a dead end for floating plastics in the north atlantic branch of the thermohaline circulation. Sci. Adv. https://doi.org/10.1126/sciadv.1600582 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505. https://doi.org/10.1038/s41467-018-03825-5 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Chiba, S. et al. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar. Policy 96, 204–212. https://doi.org/10.1016/j.marpol.2018.03.022 (2018).

    Article 

    Google Scholar 

  • 7.

    Bergmann, M., Tekman, M. & Gutow, L. Sea change for plastic pollution. Nature 544, 297 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771. https://doi.org/10.1126/science.1260352 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Camphuysen, C. J. Northern Gannets Morus bassanus found dead in the Netherlands, 1970–2000. Atlantic Seabirds 3, 15–30 (2001).

    Google Scholar 

  • 11.

    Gregory, M. R. Environmental implications of plastic debris in marine settings–entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Phil. Trans. R. Soc. B 364, 2013–2025 (2009).

    Article 

    Google Scholar 

  • 12.

    Ryan, P. G. The effects of ingested plastic on seabirds: Correlations between plastic load and body condition. Environ. Pollut. 46, 119–125 (1987).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Ryan, P. G. Effects of ingested plastic on seabird feeding: Evidence from chickens. Mar. Pollut. Bull. 19, 125–128 (1988).

    Article 

    Google Scholar 

  • 14.

    Pierce, K. E., Harris, R. J., Larned, L. S. & Pokras, M. A. Obstruction and starvation associated with plastic ingestion in a Northern Gannet Morus bassanus and a greater shearwater Puffinus gravis. Mar. Ornithol. 32, 187–189 (2004).

    Google Scholar 

  • 15.

    Ryan, P. G., Connell, A. D. & Gardner, B. D. Plastic ingestion and PCBs in seabirds: Is there a relationship?. Mar. Pollut. Bull. 19, 174–176 (1988).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Lavers, J. L., Bond, A. L. & Hutton, I. Plastic ingestion by Flesh-footed Shearwaters (Puffinus carneipes): Implications for chick body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187, 124–129. https://doi.org/10.1016/j.envpol.2013.12.020 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Tanaka, K. et al. In vivo accumulation of plastic-derived chemicals into seabird tissues. Curr. Biol. 30, 723-728.e3. https://doi.org/10.1016/j.cub.2019.12.037 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Phil. Trans. R. Soc. B 364, 2027–2045 (2009).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Tanaka, K., van Franeker, J. A., Deguchi, T. & Takada, H. Piece-by-piece analysis of additives and manufacturing byproducts in plastics ingested by seabirds: Implication for risk of exposure to seabirds. Mar. Pollut. Bull. 145, 36–41. https://doi.org/10.1016/j.marpolbul.2019.05.028 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Thiel, M. & Gutow, L. The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr. Mar. Biol. Annu. Rev. 42, 181–264 (2005).

    Google Scholar 

  • 21.

    Kiessling, T., Gutow, L. & Thiel, M. Marine litter as habitat and dispersal vector. In: Bergmann M, Gutow L, Klages M, editors. Marine Anthropogenic Litter. p. 141–80 (2015).

  • 22.

    Day, R. H. & Shaw, D. G. Patterns of abundance of pelagic plastic and tar in the North Pacific Ocean, 1976–1985. Mar. Pollut. Bull. 18, 311–316 (1987).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Pichel, W. G. et al. Marine debris collects within the North Pacific Subtropical Convergence Zone. Mar. Pollut. Bull. 54, 1207–1211 (2007).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Yamashita, R. & Tanimura, A. Floating plastic in the Kuroshio Current area, western North Pacific Ocean. Mar. Pollut. Bull. 54, 485–488 (2007).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Titmus, A. J. & Hyrenbach, K. D. Habitat associations of floating debris and marine birds in the North East Pacific Ocean at coarse and meso spatial scales. Mar. Pollut. Bull. 62, 2496–2506 (2011).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Goldstein, M. C., Titmus, A. J. & Ford, M. Scales of spatial heterogeneity of plastic marine debris in the northeast pacific ocean. PLoS ONE 8, e80020 (2013).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    ADS 
    Article 

    Google Scholar 

  • 28.

    IUCN. The IUCN Red List of Threatened Species. Version 2020–2. https://www.iucnredlist.org (2020).

  • 29.

    Lavers, J. L. & Bond, A. L. Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Mar. Pollut. Bull. 110, 493–500. https://doi.org/10.1016/j.marpolbul.2016.06.001 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Roman, L., Hardesty, B. D., Hindell, M. A. & Wilcox, C. A quantitative analysis linking seabird mortality and marine debris ingestion. Sci. Rep. 9, 3202. https://doi.org/10.1038/s41598-018-36585-9 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Jouventin, P. & Weimerskirch, H. Satellite tracking of wandering albatrosses. Nature 343, 746–748 (1990).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Kappes, M. A. et al. Hawaiian albatrosses track interannual variability of marine habitats in the North Pacific. Prog. Oceanogr. 86, 246–260 (2010).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Sakamoto, K. Q., Takahashi, A., Iwata, T. & Trathan, P. N. From the eye of the albatrosses: A bird-borne camera shows an association between albatrosses and a killer whale in the Southern Ocean. PLoS ONE 4, e7322 (2009).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Fukuoka, T. et al. The feeding habit of sea turtles influences their reaction to artificial marine debris. Sci. Rep. 6, 28015. https://doi.org/10.1038/srep28015 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Nishizawa, B. et al. Albatross-borne loggers show feeding on deep-sea squids: Implications for the study of squid distributions. Mar. Ecol. Prog. Ser. 592, 257–265 (2018).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Hunt, G. L. Jr. & Schneider, D. Scale-dependent processes in the physical and biological environment of marine birds. In Seabirds: Feeding Ecology and Role in Marine Ecosystems (ed. Croxall, J. P.) 7–41 (Cambridge University Press, 1987).

    Google Scholar 

  • 37.

    Pinaud, D. & Weimerskirch, H. At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: A comparative study. J. Anim. Ecol. 76, 9–19 (2007).

    Article 

    Google Scholar 

  • 38.

    Thiebot, J.-B., Nishizawa, B., Sato, F., Tomita, N. & Watanuki, Y. Albatross chicks reveal interactions of adults with artisanal longline fisheries within a short range. J. Ornithol. 159, 935–944 (2018).

    Article 

    Google Scholar 

  • 39.

    Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. www.fishbase.org, version (12/2019).

  • 40.

    Ryan, P. G. A simple technique for counting marine debris at sea reveals steep litter gradients between the Straits of Malacca and the Bay of Bengal. Mar. Pollut. Bull. 69, 128–136 (2013).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Mitani, Y. et al. Marine debris observed in the North Pacific during Oshoro-maru cruise in 2012. Bull. Fish. Sci. Hokkaido Univ. 64, 25–29 (2014).

    Google Scholar 

  • 42.

    Hyrenbach, K. D. et al. Plastic ingestion by Black-footed albatross from Kure Atoll, Hawai’i: linking chick loads and parental at-sea distributions. Mar. Ornithol. 45, 225–236 (2017).

    Google Scholar 

  • 43.

    Nevitt, G. A., Losekoot, M. & Weimerskirch, H. Evidence for olfactory search in wandering albatross, Diomedea Exulans. Proc. Nat. Acad. Sci. USA 105, 4576–4581 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Savoca, M. S., Wohlfeil, M. E., Ebeler, S. E. & Nevitt, G. A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. 2, e1600395 (2016).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Santos, R. G., Andrades, R., Fardim, L. M. & Martins, A. S. Marine debris ingestion and Thayer’s law—The importance of plastic color. Environ. Pollut. 214, 585–588 (2016).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Castro, J. J., Santiago, J. A. & Santana-Ortega, A. T. A general theory on fish aggregation to floating objects: An alternative to the meeting point hypothesis. Rev. Fish Biol. Fish. 11, 255–277 (2002).

    Article 

    Google Scholar 

  • 47.

    Harrison, C. S., Hida, T. S. & Seki, M. P. Hawaiian seabird feeding ecology. Wildl. Monogr. 85, 1–71 (1983).

    Google Scholar 

  • 48.

    Hunte, W., Oxenford, H. A. & Mahon, R. Distribution and relative abundance of flyingfish (Exocoetidae) in the eastern Caribbean. II. Spawning substrata, eggs and larvae. Mar. Ecol. Prog. Ser. 117, 25–37 (1995).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Rapp, D. C., Youngren, S. M., Hartzell, P. & Hyrenbach, K. D. Community-wide patterns of plastic ingestion in seabirds breeding at French Frigate Shoals Northwestern Hawaiian Islands. Mar. Pollut. Bull. 123, 269–278 (2017).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Douglas, D. & Peucker, T. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cannadian Cartogr. 10, 112–122 (1973).

    Article 

    Google Scholar 

  • 51.

    Edelhoff, H., Signer, J. & Balkenhol, N. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Move. Ecol. 4, 21 (2016).

    Article 

    Google Scholar 

  • 52.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html (2020).


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East