Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).
Google Scholar
Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).
Google Scholar
Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).
Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159 (1959).
Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).
Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic assembly patterns in complex ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).
Google Scholar
Serván, C. A., Capitán, J. A., Grilli, J., Morrison, K. E. & Allesina, S. Coexistence of many species in random ecosystems. Nat. Ecol. Evol. 2, 1237–1242 (2018).
Google Scholar
MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).
Google Scholar
Medeiros, L. P., Boege, K., del Val, E., Zaldivar-Riverón, A. & Saavedra, S. Observed ecological communities are formed by species combinations that are among the most likely to persist under changing environments. Am. Nat. https://doi.org/10.1086/711663 (2020).
Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).
Grainger, T. N. & Gilbert, J. M. L. B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 34, 925–935 (2019).
Google Scholar
Alberch, P. The logic of monsters: evidence for internal constraint in development and evolution. Geobios 22, 21–57 (1989).
Clements, F. E. Nature and structure of the climax. J. Ecol. 24, 252–284 (1936).
Odum, E. P. & Barrett, G. W. Fundamentals of Ecology 5th edn (Thomson Brooks/Cole, 2005).
Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Drake, J. A. Community-assembly mechanics and the structure of an experimental species ensemble. Am. Nat. 137, 1–26 (1991).
Warren, P. H., Law, R. & Weatherby, A. J. Mapping the assembly of protist communities in microcosms. Ecology 84, 1001–1011 (2003).
Schreiber, S. J. & Rittenhouse, S. From simple rules to cycling in community assembly. Oikos 105, 349–358 (2004).
Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).
Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
Moore, R., Robinson, W., Lovette, I. & Robinson, T. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).
Google Scholar
Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).
Google Scholar
Serván, C. & Allesina, S. Tractable models of ecological assembly. Ecol. Lett. 24, 1029–1037 (2021).
Google Scholar
Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).
Google Scholar
Case, T. J. Surprising behavior from a familiar model and implications for competition theory. Am. Nat. 146, 961–966 (1995).
Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).
Tilman, D. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116, 362–393 (1980).
May, R. M. & Leonard, W. J. Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975).
Dean, A. M. A simple model of mutualism. Am. Nat. 121, 409–417 (1983).
Song, C., Ahn, S. V., Rohr, R. P. & Saavedra, S. Towards a probabilistic understanding about the context-dependency of species interactions. Trends Ecol. Evol. 35, 384–396 (2020).
Google Scholar
Saavedra, S., Medeiros, L. P. & AlAdwani, M. Structural forecasting of species persistence under changing environments. Ecol. Lett. https://doi.org/10.1111/ele.13582 (2020).
Law, R. & Blackford, J. C. Self-assembling food webs: a global viewpoint of coexistence of species in Lotka–Volterra communities. Ecology 73, 567–578 (1992).
Sigmuiud, K. Darwin’s ‘circles of complexity’: assembling ecological communities. Complexity 1, 40–44 (1995).
Law, R. & Morton, R. D. Permanence and the assembly of ecological communities. Ecology 77, 762–775 (1996).
Wilson, J. B., Spijkerman, E. & Huisman, J. Is there really insufficient support for Tilman’s R* concept? A comment on Miller et al. Am. Nat. 169, 700–706 (2007).
Google Scholar
May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).
Google Scholar
Cenci, S., Song, C. & Saavedra, S. Rethinking the importance of the structure of ecological networks under an environment-dependent framework. Ecol. Evol. 8, 6852–6859 (2018).
Google Scholar
O’Dwyer, J. P. Whence Lotka-Volterra? Theor. Ecol. 11, 441–452 (2018).
Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S.Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).
Google Scholar
Vandermeer, J. H. The competitive structure of communities: an experimental approach with protozoa. Ecology 50, 362–371 (1969).
Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).
Google Scholar
Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).
Google Scholar
Bucci, V. et al. MDSINE: Microbial Dynamical Systems Inference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).
Google Scholar
Turelli, M. A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity. Theor. Popul. Biol. 13, 244–267 (1978).
Google Scholar
May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).
Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).
Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
Google Scholar
Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).
Google Scholar
Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).
Google Scholar
Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).
Freedman, H. & So, J.-H. Global stability and persistence of simple food chains. Math. Biosci. 76, 69–86 (1985).
Posfai, A., Taillefumier, T. & Wingreen, N. S. Metabolic trade-offs promote diversity in a model ecosystem. Phys. Rev. Lett. 118, 028103 (2017).
Google Scholar
Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
Google Scholar
Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).
Google Scholar
Xiao, Y. et al. Mapping the ecological networks of microbial communities. Nat. Commun. 8, 2042 (2017).
Google Scholar
AlAdwani, M. & Saavedra, S. Is the addition of higher-order interactions in ecological models increasing the understanding of ecological dynamics? Math. Biosci. 315, 108222 (2019).
Google Scholar
Weibel, C. A. in History of Topology (ed. James, I.) 797–836 (North-Holland, 1999).
Carlsson, G. Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009).
Rabadán, R. & Blumberg, A. J. Topological Data Analysis for Genomics and Evolution: Topology in Biology (Cambridge Univ. Press, 2019).
Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R. & Bassett, D. S. The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3, 656–673 (2019).
Google Scholar
Sugihara, G. Graph theory, homology and food webs. In Proc. Symposia in Applied Mathematics 30, 83–101 (American Mathematical Society, 1984).
Singh, G., Mémoli, F. & Carlsson, G. E. Topological methods for the analysis of high dimensional data sets and 3D object recognition. In Symposium on Point Based Graphics 91–100 (The Eurographics Association, 2007).
Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 41, 1–14 (2016).
Google Scholar
Bauer, U. Ripser: efficient computation of Vietoris–Rips persistence barcodes. Preprint at https://arxiv.org/abs/1908.02518 (2019).
Fort, H. On predicting species yields in multispecies communities: quantifying the accuracy of the linear Lotka–Volterra generalized model. Ecol. Model. 387, 154–162 (2018).
Halty, V., Valdés, M., Tejera, M., Picasso, V. & Fort, H. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations. Ecol. Appl. 27, 2277–2289 (2017).
Google Scholar
Tabi, A. et al. Species multidimensional effects explain idiosyncratic responses of communities to environmental change. Nat. Ecol. Evol. 4, 1036–1043 (2020).
Google Scholar
Jansen, W. A permanence theorem for replicator and Lotka–Volterra systems. J. Math. Biol. 25, 411–422 (1987).
Schreiber, S. J. Criteria for Cr robust permanence. J. Differ. Equ. 162, 400–426 (2000).
Angulo, M. T., Moreno, J. A., Lippner, G., Barabási, A.-L. & Liu, Y.-Y. Fundamental limitations of network reconstruction from temporal data. J. R. Soc. Interface 14, 20160966 (2017).
Google Scholar
Source: Ecology - nature.com