in

Differential gene expression indicates modulated responses to chronic and intermittent hypoxia in corallivorous fireworms (Hermodice carunculata)

  • 1.

    Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. 114, 3660–3665 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Lehrter, J. C., Ko, D. S., Lowe, L. L. & Penta, B. Predicted effects of climate change on northern Gulf of Mexico hypoxia. In Modeling coastal hypoxia 173–214 (Springer, 2017).

  • 3.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 4.

    Nelson, H. R. & Altieri, A. H. Oxygen: The universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 1–12 (2020).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Murphy, J. W. & Richmond, R. H. Changes to coral health and metabolic activity under oxygen deprivation. PeerJ 4, e1956 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Ann. Rev. Mar. Sci. 9, 5.1-5.24 (2017).

    Article 

    Google Scholar 

  • 8.

    Van Oppen, M. J. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Montagna, P. A. & Ritter, C. Direct and indirect effects of hypoxia on benthos in Corpus Christi Bay, Texas, USA. J. Exp. Mar. Biol. Ecol. 330, 119–131 (2006).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Pollock, M., Clarke, L. & Dubé, M. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ. Rev. 15, 1–14 (2007).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Seitz, R. D., Dauer, D. M., Llansó, R. J. & Long, W. C. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. J. Exp. Mar. Biol. Ecol. 381, S4–S12 (2009).

    Article 

    Google Scholar 

  • 12.

    Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Ann. Rev. 33, 245–203 (1995).

    Google Scholar 

  • 13.

    Dean, T. L. & Richardson, J. Responses of seven species of native freshwater fish and a shrimp to low levels of dissolved oxygen. NZ J. Mar. Freshw. Res. 33, 99–106 (1999).

    Article 

    Google Scholar 

  • 14.

    Wannamaker, C. M. & Rice, J. A. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J. Exp. Mar. Biol. Ecol. 249, 145–163 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Richardson, J., Williams, E. K. & Hickey, C. W. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. NZ J. Mar. Freshwat. Res. 35, 625–633 (2001).

    Article 

    Google Scholar 

  • 16.

    McAllen, R., Davenport, J., Bredendieck, K. & Dunne, D. Seasonal structuring of a benthic community exposed to regular hypoxic events. J. Exp. Mar. Biol. Ecol. 368, 67–74 (2009).

    Article 

    Google Scholar 

  • 17.

    Ogino, T. & Toyohara, H. Identification of possible hypoxia sensor for behavioral responses in a marine annelid. Capitella teleta. Biol. Open 8, bio37630 (2019).

    Google Scholar 

  • 18.

    Lenihan, H. S. & Peterson, C. H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol. Appl. 8, 128–140 (1998).

    Article 

    Google Scholar 

  • 19.

    Li, F.-G., Chen, J., Jiang, X.-Y. & Zou, S.-M. Transcriptome analysis of blunt snout bream (Megalobrama amblycephala) reveals putative differential expression genes related to growth and hypoxia. PLoS ONE 10, e0142801 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Sahlmann, A., Wolf, R., Holth, T. F., Titelman, J. & Hylland, K. Baseline and oxidative DNA damage in marine invertebrates. J. Toxicol. Environ. Health A 80, 807–819 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Zoccola, D. et al. Structural and functional analysis of coral Hypoxia Inducible Factor. PLoS ONE 12, e0186262 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Díaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303 (1995).

    Google Scholar 

  • 23.

    Bodamer, B. L. & Bridgeman, T. B. Experimental dead zones: two designs for creating oxygen gradients in aquatic ecological studies. Limnol. Oceanogr. Methods 12, 441–454 (2014).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457. https://doi.org/10.1073/pnas.0803833105 (2008).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Branco, P. et al. Potamodromous fish movements under multiple stressors: Connectivity reduction and oxygen depletion. Sci. Total Environ. 572, 520–525 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Hayes, D. S., Branco, P., Santos, J. M. & Ferreira, T. Oxygen depletion affects kinematics and shoaling cohesion of cyprinid fish. Water 11, 642 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Grimes, C. J., Capps, C., Petersen, L. H. & Schulze, A. Oxygen consumption during and post hypoxia exposure in bearded fireworms (Annelida: Amphinomidae). J. Comp. Physiol. B 190, 681–689 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. Stke 407, 1–3 (2007).

  • 29.

    Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272–279 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. 92, 5510–5514 (1995).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Kaelin, W. G. Jr. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Marques, I. J. et al. Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. J. Comp. Physiol. B. 178, 77–92 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Schulze, A., Grimes, C. J. & Rudek, T. E. Tough, armed and omnivorous: Hermodice carunculata (Annelida: Amphinomidae) is prepared for ecological challenges. J. Mar. Biol. Assoc. UK. 97,1–6 (2017).

  • 34.

    Witman, J. D. Effects of predation by the fireworm Hermodice carunculata on milleporid hydrocorals. Bull. Mar. Sci. 42, 446–458 (1988).

    Google Scholar 

  • 35.

    Vreeland, H. & Lasker, H. Selective feeding of the polychaete Hermodice carunculata Pallas on Caribbean gorgonians. J. Exp. Mar. Biol. Ecol. 129, 265–277 (1989).

    Article 

    Google Scholar 

  • 36.

    Vargas-Ángel, B., Thomas, J. D. & Hoke, S. M. High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22, 465–473 (2003).

    Article 

    Google Scholar 

  • 37.

    Miller, M., Marmet, C., Cameron, C. & Williams, D. Prevalence, consequences, and mitigation of fireworm predation on endangered staghorn coral. Mar. Ecol. Prog. Ser. 516, 187–194 (2014).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Lucey, N. M., Collins, M. & Collin, R. Oxygen‐mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecol. Evol. 10, 1145–1157 (2019).

  • 39.

    Grimes, C. J., Paiva, P. C., Petersen, L. H. & Schulze, A. Rapid plastic responses to chronic hypoxia in the bearded fireworm, Hermodice carunculata (Annelida: Amphinomidae). Mar. Biol. https://doi.org/10.1007/s00227-020-03756-0 (2020).

    Article 

    Google Scholar 

  • 40.

    Yáñez-Rivera, B. & Salazar-Vallejo, S. I. Revision of Hermodice Kinberg, 1857 (Polychaeta: Amphinomidae). Sci. Mar. 75, 251–262 (2011).

    Article 

    Google Scholar 

  • 41.

    Ahrens, J. B. et al. The curious case of Hermodice carunculata (Annelida: Amphinomidae): Evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol. Ecol. 22, 2280–2291 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Gorr, T. A., Cahn, J. D., Yamagata, H. & Bunn, H. F. Hypoxia-induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-dependent. J. Biol. Chem. 279, 36038–36047 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Li, T. & Brouwer, M. Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes pugio: Molecular characterization and response to hypoxia. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 147, 11–19 (2007).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Soñanez-Organis, J. G. et al. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 150, 395–405 (2009).

    Google Scholar 

  • 45.

    Wei, L. et al. Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia. Chemosphere 153, 198–204 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Giannetto, A. et al. Hypoxia-inducible factor α and Hif-prolyl hydroxylase characterization and gene expression in short-time air-exposed Mytilus galloprovincialis. Mar. Biotechnol. 17, 768–781 (2015).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Philipp, E. E. et al. Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions. PLoS ONE 7, e44621 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Sussarellu, R., Fabioux, C., Le Moullac, G., Fleury, E. & Moraga, D. Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia. Mar. Genom. 3, 133–143 (2010).

    Article 

    Google Scholar 

  • 49.

    Woo, S. et al. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zool. Stud. 52, 15 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Burgeot, T. et al. Oyster summer morality risks associated with environmental stress. Summer Mortality of Pacific Oyster Crassostrea Gigas. The Morest Project. Éd. Ifremer/Quæ, 107–151 (2008).

  • 51.

    David, E., Tanguy, A., Pichavant, K. & Moraga, D. Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions. FEBS J. 272, 5635–5652 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Hourdez, S. et al. Gas transfer system in Alvinella pompejana (Annelida polychaeta, Terebellida): Functional properties of intracellular and extracellular hemoglobins. Physiol. Biochem. Zool. 73, 365–373 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Boutet, I., Jollivet, D., Shillito, B., Moraga, D. & Tanguy, A. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genom. 10, 222 (2009).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 55.

    Huggett, J. & Griffiths, C. Some relationships between elevation, physico-chemical variables and biota of intertidal rock pools. Mar. Ecol. Prog. Ser. 29, 189–197 (1986).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Kinsey, D. & Kinsey, E. Diurnal changes in oxygen content of the water over the coral reef platform at Heron I. Mar. Freshw. Res. 18, 23–34 (1967).

    Article 

    Google Scholar 

  • 57.

    Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part I 51, 1159–1168 (2004).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Levin, L. A., Gage, J. D., Martin, C. & Lamont, P. A. Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep Sea Res. Part II 47, 189–226 (2000).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Gallardo, V. et al. Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep Sea Res. Part II 51, 2475–2490 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 60.

    Gooday, A. et al. Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep Sea Res. Part II 56, 488–502 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    Prabhakar, N. R. & Semenza, G. L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92, 967–1003 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Du, S. N., Mahalingam, S., Borowiec, B. G. & Scott, G. R. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus). J. Exp. Biol. 219, 1130–1138 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1–19 (2015).

  • 68.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Conesa, A., Nueda, M. J., Ferrer, A. & Talón, M. maSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22, 1096–1102 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Nueda, M.J., Tarazona, S., & Conesa, A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics, 30, 2598–2602. https://doi.org/10.1093/bioinformatics/btu333 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    OmicsBox. Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox (2019).

  • 72.

    Costa-Paiva, E. M., Schrago, C. G., Coates, C. J. & Halanych, K. M. Discovery of novel hemocyanin-like genes in Metazoans. Biol. Bull. 235, 134–151 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Kanaoka, Y. & Urade, Y. Hematopoietic prostaglandin D synthase. Prostaglandins Leukot. Essent. Fatty Acids 69, 163–167 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Altun, M. et al. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia. J. Biol. Chem. 287, 1962–1969 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Ogawa, M. et al. 17β-estradiol represses myogenic differentiation by increasing ubiquitin-specific peptidase 19 through estrogen receptor α. J. Biol. Chem. 286, 41455–41465 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J. Biol. Chem. 277, 29936–29944 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Nallapalli, R. K. et al. Targeting filamin A reduces K-RAS–induced lung adenocarcinomas and endothelial response to tumor growth in mice. Mol. Cancer 11, 1–11 (2012).

    Article 
    CAS 

    Google Scholar 

  • 78.

    Feng, Y. et al. Filamin A (FLNA) is required for cell–cell contact in vascular development and cardiac morphogenesis. Proc. Natl. Acad. Sci. 103, 19836–19841 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Muñoz-Chápuli, R. Evolution of angiogenesis. Int. J. Dev. Biol. 55, 345–351 (2011).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 80.

    Kim, S., Lee, M. & Choi, Y. K. The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol. Ther. 28, 45 (2020).

    Article 

    Google Scholar 

  • 81.

    Nie, H., Wang, H., Jiang, K. & Yan, X. Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genom. 21, 1–16 (2020).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor

    3Q: The socio-environmental complexities of renewable energy