in

Reinterpreting the relationship between number of species and number of links connects community structure and stability

  • 1.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Chen, X. & Cohen, J. E. Support of the hyperbolic connectance hypothesis by qualitative stability of model food webs. Community Ecol. 1, 215–225 (2001).

    Article 

    Google Scholar 

  • 6.

    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).

    Article 

    Google Scholar 

  • 7.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article 

    Google Scholar 

  • 8.

    Solé, R. V. & Montoya, J. M. Complexity and fragility in ecological networks. Proc. Biol. Sci. 268, 2039–2045 (2001).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B 364, 1711–1723 (2009).

    Article 

    Google Scholar 

  • 11.

    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).

    Article 

    Google Scholar 

  • 12.

    Kaiser‐Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Cohen, J. E. & Briand, F. Trophic links of community food webs. Proc. Natl Acad. Sci. USA 81, 4105–4109 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).

    Article 

    Google Scholar 

  • 17.

    Riede, J. O. et al. in Advances in Ecological Research (ed. Woodward, G.) 139–170 (Academic Press, 2010).

  • 18.

    Dunne, J. A. in Ecological Networks: Linking Structure to Dynamics in Food Webs 27–60 (Oxford Univ. Press, 2006).

  • 19.

    Calizza, E., Rossi, L., Careddu, G., Caputi, S. S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).

  • 20.

    Montoya, J. M. & Solé, R. V. Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622 (2003).

    Article 

    Google Scholar 

  • 21.

    Schmid‐Araya, J. M. et al. Connectance in stream food webs. J. Anim. Ecol. 71, 1056–1062 (2002).

    Article 

    Google Scholar 

  • 22.

    Warren, P. H. Variation in food-web structure: the determinants of connectance. Am. Nat. 136, 689–700 (1990).

    Article 

    Google Scholar 

  • 23.

    Havens, K. Scale and structure in natural food webs. Science 257, 1107–1109 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Martinez, N. D. Effect of scale on food web structure. Science 260, 242–243 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Ings, T. C. et al. Review: ecological networks—beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Briand, F. Environmental control of food web structure. Ecology 64, 253–263 (1983).

    Article 

    Google Scholar 

  • 27.

    Schneider, D. W. Predation and food web structure along a habitat duration gradient. Oecologia 110, 567–575 (1997).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Briand, F. Structural singularities of freshwater food webs. Archiv Hydrobiol. 22, 3356–3364 (1985).

    Google Scholar 

  • 29.

    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).

    Article 

    Google Scholar 

  • 30.

    Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167–171 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B 364, 1701–1709 (2009).

    Article 

    Google Scholar 

  • 32.

    Brosi, B. J., Niezgoda, K. & Briggs, H. M. Experimental species removals impact the architecture of pollination networks. Biol. Lett. 13, 20170243 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Eklöf, A. & Ebenman, B. Species loss and secondary extinctions in simple and complex model communities. J. Anim. Ecol. 75, 239–246 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Zhao, L. et al. Weighting and indirect effects identify keystone species in food webs. Ecol. Lett. 19, 1032–1040 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Bellingeri, M. & Vincenzi, S. Robustness of empirical food webs with varying consumer’s sensitivities to loss of resources. J. Theor. Biol. 333, 18–26 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Article 

    Google Scholar 

  • 37.

    Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R. News 8, 8–11 (2008).

    Google Scholar 

  • 38.

    Guardiola, M., Stefanescu, C., Rodà, F. & Pino, J. Do asynchronies in extinction debt affect the structure of trophic networks? A case study of antagonistic butterfly larvae–plant networks. Oikos 127, 803–813 (2018).

    Article 

    Google Scholar 

  • 39.

    Cai, Q. & Liu, J. The robustness of ecosystems to the species loss of community. Sci. Rep. 6, 35904 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Vieira, M. C. & Almeida‐Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Vanbergen, A. J., Woodcock, B. A., Heard, M. S. & Chapman, D. S. Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Funct. Ecol. 31, 1285–1293 (2017).

    Article 

    Google Scholar 

  • 44.

    Allesina, S. & Bodini, A. Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. J. Theor. Biol. 230, 351–358 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article 

    Google Scholar 

  • 46.

    Donohue, I. et al. Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Glob. Change Biol. 23, 2962–2972 (2017).

    Article 

    Google Scholar 

  • 47.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Article 

    Google Scholar 

  • 48.

    Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).

    Article 

    Google Scholar 

  • 49.

    Ramos‐Jiliberto, R., Valdovinos, F. S., Espanés, P. Mde & Flores, J. D. Topological plasticity increases robustness of mutualistic networks. J. Anim. Ecol. 81, 896–904 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).

    Article 

    Google Scholar 

  • 51.

    Thébault, E. & Fontaine, C. Does asymmetric specialization differ between mutualistic and trophic networks? Oikos 117, 555–563 (2008).

    Article 

    Google Scholar 

  • 52.

    Banašek-Richter, C., Cattin, M.-F. & Bersier, L.-F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226, 23–32 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Martinez, N. D., Hawkins, B. A., Dawah, H. A. & Feifarek, B. P. Effects of sampling effort on characterization of food-web structure. Ecology 80, 1044–1055 (1999).

    Article 

    Google Scholar 

  • 54.

    Bersier, L.-F., Dixon, P. & Sugihara, G. Scale-invariant or scale-dependent behavior of the link density property in food webs: a matter of sampling effort? Am. Nat. https://doi.org/10.1086/303200 (1999).

  • 55.

    Barabási, A.-L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Guardiola, M., Stefanescu, C., Rodà, F. & Pino, J. Data from: Do asynchronies in extinction debt affect the structure of trophic networks? A case study of antagonistic butterfly larvae–plant networks. Dryad https://doi.org/10.5061/dryad.hk30k (2017).

  • 57.

    Brosi, B. J., Niezgoda, K. & Briggs, H. M. Data from: Experimental species removals impact the architecture of pollination networks. Dryad https://doi.org/10.5061/dryad.hk30k (2017).

  • 58.

    Kemp, J. E., Evans, D. M., Augustyn, W. J. & Ellis, A. G. Data from: Invariant antagonistic network structure despite high spatial and temporal turnover of interactions. Dryad https://doi.org/10.5061/dryad.jb4dh (2016).

  • 59.

    Fricke, E. C., Tewksbury, J. J., Wandrag, E. M. & Rogers, H. S. Data from: Mutualistic strategies minimize coextinction in plant-disperser networks. Dryad https://doi.org/10.5061/dryad.r1478 (2017).

  • 60.

    Santamaría, S., Galeano, J., Pastor, J. M. & Méndez, M. Data from: Removing interactions, rather than species, casts doubt on the high robustness of pollination networks. Dryad https://doi.org/10.5061/dryad.73520 (2015).

  • 61.

    Saavedra, S., Cenci, S., Del-Val, E., Boege, K. & Rohr, R. P. Data from: Reorganization of interaction networks modulates the persistence of species in late successional stages. Dryad https://doi.org/10.5061/dryad.5h187 (2018).

  • 62.

    Olito, C. & Fox, J. W. Data from: Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Dryad https://doi.org/10.5061/dryad.7st32 (2015).

  • 63.

    Cohen, J. E. et al. Improving food webs. Ecology 74, 252–258 (1993).

    Article 

    Google Scholar 

  • 64.

    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Hampton, S. E., Fradkin, S. C., Leavitt, P. R. & Rosenberger, E. E. Disproportionate importance of nearshore habitat for the food web of a deep oligotrophic lake. Mar. Freshw. Res. 62, 350–358 (2011).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Olito, C. & Fox, J. W. Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Oikos 124, 428–436 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Taking an indirect path into a bright future

    Sex-biased genes and metabolites explain morphologically sexual dimorphism and reproductive costs in Salix paraplesia catkins