May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).
Google Scholar
Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
Google Scholar
Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).
Google Scholar
Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
Google Scholar
Chen, X. & Cohen, J. E. Support of the hyperbolic connectance hypothesis by qualitative stability of model food webs. Community Ecol. 1, 215–225 (2001).
Google Scholar
Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
Google Scholar
Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Google Scholar
Solé, R. V. & Montoya, J. M. Complexity and fragility in ecological networks. Proc. Biol. Sci. 268, 2039–2045 (2001).
Google Scholar
Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).
Google Scholar
Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B 364, 1711–1723 (2009).
Google Scholar
Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).
Google Scholar
Kaiser‐Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).
Google Scholar
Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).
Google Scholar
Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).
Google Scholar
Cohen, J. E. & Briand, F. Trophic links of community food webs. Proc. Natl Acad. Sci. USA 81, 4105–4109 (1984).
Google Scholar
Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).
Google Scholar
Riede, J. O. et al. in Advances in Ecological Research (ed. Woodward, G.) 139–170 (Academic Press, 2010).
Dunne, J. A. in Ecological Networks: Linking Structure to Dynamics in Food Webs 27–60 (Oxford Univ. Press, 2006).
Calizza, E., Rossi, L., Careddu, G., Caputi, S. S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).
Montoya, J. M. & Solé, R. V. Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622 (2003).
Google Scholar
Schmid‐Araya, J. M. et al. Connectance in stream food webs. J. Anim. Ecol. 71, 1056–1062 (2002).
Google Scholar
Warren, P. H. Variation in food-web structure: the determinants of connectance. Am. Nat. 136, 689–700 (1990).
Google Scholar
Havens, K. Scale and structure in natural food webs. Science 257, 1107–1109 (1992).
Google Scholar
Martinez, N. D. Effect of scale on food web structure. Science 260, 242–243 (1993).
Google Scholar
Ings, T. C. et al. Review: ecological networks—beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).
Google Scholar
Briand, F. Environmental control of food web structure. Ecology 64, 253–263 (1983).
Google Scholar
Schneider, D. W. Predation and food web structure along a habitat duration gradient. Oecologia 110, 567–575 (1997).
Google Scholar
Briand, F. Structural singularities of freshwater food webs. Archiv Hydrobiol. 22, 3356–3364 (1985).
Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).
Google Scholar
Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167–171 (2004).
Google Scholar
Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B 364, 1701–1709 (2009).
Google Scholar
Brosi, B. J., Niezgoda, K. & Briggs, H. M. Experimental species removals impact the architecture of pollination networks. Biol. Lett. 13, 20170243 (2017).
Google Scholar
Eklöf, A. & Ebenman, B. Species loss and secondary extinctions in simple and complex model communities. J. Anim. Ecol. 75, 239–246 (2006).
Google Scholar
Zhao, L. et al. Weighting and indirect effects identify keystone species in food webs. Ecol. Lett. 19, 1032–1040 (2016).
Google Scholar
Bellingeri, M. & Vincenzi, S. Robustness of empirical food webs with varying consumer’s sensitivities to loss of resources. J. Theor. Biol. 333, 18–26 (2013).
Google Scholar
Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).
Google Scholar
Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R. News 8, 8–11 (2008).
Guardiola, M., Stefanescu, C., Rodà, F. & Pino, J. Do asynchronies in extinction debt affect the structure of trophic networks? A case study of antagonistic butterfly larvae–plant networks. Oikos 127, 803–813 (2018).
Google Scholar
Cai, Q. & Liu, J. The robustness of ecosystems to the species loss of community. Sci. Rep. 6, 35904 (2016).
Google Scholar
Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).
Google Scholar
Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).
Google Scholar
Vieira, M. C. & Almeida‐Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).
Google Scholar
Vanbergen, A. J., Woodcock, B. A., Heard, M. S. & Chapman, D. S. Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Funct. Ecol. 31, 1285–1293 (2017).
Google Scholar
Allesina, S. & Bodini, A. Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. J. Theor. Biol. 230, 351–358 (2004).
Google Scholar
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
Google Scholar
Donohue, I. et al. Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Glob. Change Biol. 23, 2962–2972 (2017).
Google Scholar
Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
Google Scholar
Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).
Google Scholar
Ramos‐Jiliberto, R., Valdovinos, F. S., Espanés, P. Mde & Flores, J. D. Topological plasticity increases robustness of mutualistic networks. J. Anim. Ecol. 81, 896–904 (2012).
Google Scholar
Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).
Google Scholar
Thébault, E. & Fontaine, C. Does asymmetric specialization differ between mutualistic and trophic networks? Oikos 117, 555–563 (2008).
Google Scholar
Banašek-Richter, C., Cattin, M.-F. & Bersier, L.-F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226, 23–32 (2004).
Google Scholar
Martinez, N. D., Hawkins, B. A., Dawah, H. A. & Feifarek, B. P. Effects of sampling effort on characterization of food-web structure. Ecology 80, 1044–1055 (1999).
Google Scholar
Bersier, L.-F., Dixon, P. & Sugihara, G. Scale-invariant or scale-dependent behavior of the link density property in food webs: a matter of sampling effort? Am. Nat. https://doi.org/10.1086/303200 (1999).
Barabási, A.-L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).
Google Scholar
Guardiola, M., Stefanescu, C., Rodà, F. & Pino, J. Data from: Do asynchronies in extinction debt affect the structure of trophic networks? A case study of antagonistic butterfly larvae–plant networks. Dryad https://doi.org/10.5061/dryad.hk30k (2017).
Brosi, B. J., Niezgoda, K. & Briggs, H. M. Data from: Experimental species removals impact the architecture of pollination networks. Dryad https://doi.org/10.5061/dryad.hk30k (2017).
Kemp, J. E., Evans, D. M., Augustyn, W. J. & Ellis, A. G. Data from: Invariant antagonistic network structure despite high spatial and temporal turnover of interactions. Dryad https://doi.org/10.5061/dryad.jb4dh (2016).
Fricke, E. C., Tewksbury, J. J., Wandrag, E. M. & Rogers, H. S. Data from: Mutualistic strategies minimize coextinction in plant-disperser networks. Dryad https://doi.org/10.5061/dryad.r1478 (2017).
Santamaría, S., Galeano, J., Pastor, J. M. & Méndez, M. Data from: Removing interactions, rather than species, casts doubt on the high robustness of pollination networks. Dryad https://doi.org/10.5061/dryad.73520 (2015).
Saavedra, S., Cenci, S., Del-Val, E., Boege, K. & Rohr, R. P. Data from: Reorganization of interaction networks modulates the persistence of species in late successional stages. Dryad https://doi.org/10.5061/dryad.5h187 (2018).
Olito, C. & Fox, J. W. Data from: Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Dryad https://doi.org/10.5061/dryad.7st32 (2015).
Cohen, J. E. et al. Improving food webs. Ecology 74, 252–258 (1993).
Google Scholar
Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).
Google Scholar
Hampton, S. E., Fradkin, S. C., Leavitt, P. R. & Rosenberger, E. E. Disproportionate importance of nearshore habitat for the food web of a deep oligotrophic lake. Mar. Freshw. Res. 62, 350–358 (2011).
Google Scholar
Olito, C. & Fox, J. W. Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Oikos 124, 428–436 (2015).
Google Scholar
Source: Ecology - nature.com