in

Differential gene expression in Drosophila melanogaster and D. nigrosparsa infected with the same Wolbachia strain

  • 1.

    Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0150-2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Gutzwiller, F. et al. Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle. G3 Genes Genomes Genet. 5, 2843–2856 (2015).

    CAS 

    Google Scholar 

  • 3.

    Bennuru, S. et al. Stage-specific transcriptome and proteome analyses of the filarial parasite Onchocerca volvulus and its Wolbachia endosymbiont. MBio 7, e02028-e2116 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Baião, G. C., Schneider, D. I., Miller, W. J. & Klasson, L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genom. 20, 465 (2019).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7, e38544 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Sazama, E. J., Bosch, M. J., Shouldis, C. S., Ouellette, S. P. & Wesner, J. S. Incidence of Wolbachia in aquatic insects. Ecol. Evol. 7, 1165–1169 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Detcharoen, M., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Wolbachia megadiversity: 99% of these microorganismic manipulators unknown. FEMS Microbiol. Ecol. 95, fiz151 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. U. S. A. 107, 769–774 (2010).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 10.

    Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science (80-). 322, 702–702 (2008).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 12.

    Osborne, S. E., Leong, Y. S., O’Neill, S. L. & Johnson, K. N. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog. 5, e1000656 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Cattel, J., Martinez, J., Jiggins, F., Mouton, L. & Gibert, P. Wolbachia-mediated protection against viruses in the invasive pest Drosophila suzukii. Insect Mol. Biol. 25, 595–603 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science (80-). 300, 1742–1745 (2003).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 15.

    Herbert, R. I. & McGraw, E. A. The nature of the immune response in novel Wolbachia-host associations. Symbiosis 74, 225–236 (2018).

    Article 

    Google Scholar 

  • 16.

    Woodford, L. et al. Vector species-specific association between natural Wolbachia infections and avian malaria in black fly populations. Sci. Rep. 8, 4188 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 17.

    Huigens, M. E., De Almeida, R. P., Boons, P. A. H., Luck, R. F. & Stouthamer, R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. R. Soc. B Biol. Sci. 271, 509–515 (2004).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Detcharoen, M., Arthofer, W., Jiggins, F. M., Steiner, F. M. & Schlick-Steiner, B. C. Wolbachia affect behavior and possibly reproductive compatibility but not thermoresistance, fecundity, and morphology in a novel transinfected host, Drosophila nigrosparsa. Ecol. Evol. 10, 4457–4470 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Woolfit, M. et al. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol. Evol. 5, 2189–2204 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Suh, E., Mercer, D. R., Fu, Y. & Dobson, S. L. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Appl. Environ. Microbiol. 75, 7783–7788 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    McGraw, E. A., Merritt, D. J., Droller, J. N. & O’Neill, S. L. Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc. R. Soc. B Biol. Sci. 268, 2565–2570 (2001).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Xie, J., Vilchez, I. & Mateos, M. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One 5, e12149 (2010).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 23.

    Hutchence, K. J., Fischer, B., Paterson, S. & Hurst, G. D. D. How do insects react to novel inherited symbionts? A microarray analysis of Drosophila melanogaster response to the presence of natural and introduced Spiroplasma. Mol. Ecol. 20, 950–958 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    O’Grady, P. M. & DeSalle, R. Phylogeny of the genus Drosophila. Genetics 209, 1–25 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science (80-). 325, 1244–1246 (2009).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 26.

    Bächli, G., Viljoen, F., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill, 2005).

  • 27.

    Kinzner, M.-C. et al. Life-history traits and physiological limits of the alpine fly Drosophila nigrosparsa (Diptera: Drosophilidae): A comparative study. Ecol. Evol. 8, 2006–2020 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Kinzner, M.-C. et al. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. Sci. Total Environ. 695, 133753 (2019).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 29.

    Kinzner, M.-C. et al. Oviposition substrate of the mountain fly Drosophila nigrosparsa (Diptera: Drosophilidae). PLoS One 11, e0165743 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Cicconardi, F. et al. Chemosensory adaptations of the mountain fly Drosophila nigrosparsa (Insecta: Diptera) through genomics’ and structural biology’s lenses. Sci. Rep. 7, 43770 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 31.

    Tratter Kinzner, M. et al. Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Glob. Ecol. Conserv. 18, e00638 (2019).

    Article 

    Google Scholar 

  • 32.

    Arthofer, W. et al. Genomic resources notes accepted 1 August 2014–30 September 2014. Mol. Ecol. Resour. 15, 228–229 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Cicconardi, F., Marcatili, P., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol. Phylogenet. Evol. 112, 230–243 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Verspoor, R. L. & Haddrill, P. R. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One 6, e26318 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 35.

    Lints, F. A. Size in relation to development-time and egg-density in Drosophila melanogaster. Nature 197, 1128–1130 (1963).

    Article 
    ADS 

    Google Scholar 

  • 36.

    Clemson, A. S., Sgrò, C. M. & Telonis-Scott, M. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: Quantitative traits to transcripts. J. Evol. Biol. 29, 2447–2463 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Morozova, T. V., Anholt, R. H. & Mackay, T. F. Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biol. 7, R95 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Elya, C., Zhang, V., Ludington, W. B. & Eisen, M. B. Stable host gene expression in the gut of adult Drosophila melanogaster with different bacterial mono-associations. PLoS One 11, e0167357 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: A phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Zhang, B. et al. Comparative transcriptome analysis of chemosensory genes in two sister leaf beetles provides insights into chemosensory speciation. Insect Biochem. Mol. Biol. 79, 108–118 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Gazara, R. K. et al. De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera. Gene 627, 85–93 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020), https://www.R-project.org.

  • 46.

    Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2016).

    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Thurmond, J. et al. FlyBase 2.0: The next generation. Nucleic Acids Res. 47, D759–D765 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Hardcastle, T. J. & Kelly, K. A. BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform. 11, 422 (2010).

    Article 

    Google Scholar 

  • 49.

    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 11, 367 (2010).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. (2019) https://cran.r-project.org/web/packages/vegan/.

  • 52.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

  • 54.

    Wittkopp, P. J. Variable gene expression in eukaryotes: A network perspective. J. Exp. Biol. 210, 1567–1575 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Lin, Y., Chen, Z.-X., Oliver, B. & Harbison, S. T. Microenvironmental gene expression plasticity among individual Drosophila melanogaster. G3 Genes Genomes Genet. 6, 4197–4210 (2016).

    CAS 

    Google Scholar 

  • 56.

    Kristensen, T. N., Sørensen, P., Pedersen, K. S., Kruhøffer, M. & Loeschcke, V. Inbreeding by environmental interactions affect gene expression in Drosophila melanogaster. Genetics 173, 1329–1336 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Dunning, L. T., Dennis, A. B., Sinclair, B. J., Newcomb, R. D. & Buckley, T. R. Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Mol. Ecol. 23, 2712–2726 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Lambert, A. J. & Brand, M. D. Reactive oxygen species production by mitochondria. In Mitochondrial DNA. Methods in Molecular Biology (ed. Stuart, J. A.) vol. 554 165–181 (Humana Press, 2009).

    Google Scholar 

  • 59.

    Kurz, M. et al. Structural and functional characterization of the oxidoreductase α-DsbA1 from Wolbachia pipientis. Antioxidants Redox Signal. 11, 1485–1500 (2009).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Zug, R. & Hammerstein, P. Wolbachia and the insect immune system: What reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front. Microbiol. 6, 1201 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Ratzka, C., Gross, R. & Feldhaar, H. Endosymbiont tolerance and control within insect hosts. Insects 3, 553–572 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. U. S. A. 109, E23-31 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Brennan, L. J., Haukedal, J. A., Earle, J. C., Keddie, B. & Harris, H. L. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol. Biol. 21, 510–520 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Blagrove, M. S. C., Arias-Goeta, C., Failloux, A.-B. & Sinkins, S. P. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc. Natl. Acad. Sci. 109, 255–260 (2012).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 65.

    Andrews, E. S., Crain, P. R., Fu, Y., Howe, D. K. & Dobson, S. L. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types. PLoS Pathog. 8, e1003075 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Oliveira, M. F. et al. Haem detoxification by an insect. Nature 400, 517–518 (1999).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 67.

    Paiva-Silva, G. O. et al. A heme-degradation pathway in a blood-sucking insect. Proc. Natl. Acad. Sci. U. S. A. 103, 8030–8035 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 68.

    Levi, S. & Rovida, E. The role of iron in mitochondrial function. Biochim. Biophys. Acta Gen. Subj. 1790, 629–636 (2009).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Kremer, N. et al. Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog. 5, e1000630 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Kremer, N. et al. Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol. 12, S7 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 71.

    Peng, Y., Nielsen, J. E., Cunningham, J. P. & McGraw, E. A. Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl. Environ. Microbiol. 74, 3943–3948 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Peng, Y. & Wang, Y. Infection of Wolbachia may improve the olfactory response of Drosophila. Chin. Sci. Bull. 54, 1369–1375 (2009).

    Google Scholar 

  • 73.

    Fattouh, N., Cazevieille, C. & Landmann, F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl. Trop. Dis. 13, e0007218 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Chagas-Moutinho, V. A., Silva, R., de Souza, W. & Motta, M. C. Identification and ultrastructural characterization of the Wolbachia symbiont in Litomosoides chagasfilhoi. Parasit. Vectors 8, 74 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell biology of Wolbachia-host interactions. Annu. Rev. Genet. 42, 683–707 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Ping, Y. et al. Linking Aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer’s model. PLoS Genet. 11, e1005025 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 77.

    Ping, Y. et al. Shal/Kv4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila. PLoS One 6, e16043 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 78.

    Ping, Y. & Tsunoda, S. Inactivity-induced increase in nAChRs upregulates Shal K+ channels to stabilize synaptic potentials. Nat. Neurosci. 15, 90–97 (2012).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Kim, W. J., Jan, L. Y. & Jan, Y. N. A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating. Neuron 80, 1190–1205 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    King, A. N. et al. A peptidergic circuit links the circadian clock to locomotor activity. Curr. Biol. 27, 1915-1927.e5 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Kim, Y. J., Žitňan, D., Galizia, C. G., Cho, K. H. & Adams, M. E. A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr. Biol. 16, 1395–1407 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 14, 3158 (2013).

    Article 
    CAS 

    Google Scholar 

  • 83.

    Kvam, V. M., Liu, P. & Si, Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am. J. Bot. 99, 248–256 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Guo, Y., Li, C. I., Ye, F. & Shyr, Y. Evaluation of read count based RNAseq analysis methods. BMC Genom. 14, S2 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Taking an indirect path into a bright future

    Sex-biased genes and metabolites explain morphologically sexual dimorphism and reproductive costs in Salix paraplesia catkins