in

Evidence of considerable C and N transfer from peas to cereals via direct root contact but not via mycorrhiza

  • 1.

    Neugschwandter, R. W. & Kaul, H. P. Sowing ratio and N fertilization affect yield and yield components of oat and pea in intercrops. Field Crops Res. 155, 159–163 (2014).

    Article 

    Google Scholar 

  • 2.

    Hu, F. et al. Low N fertilizer application and intercropping increases N concentration in pea (Pisum sativum L.) grains. Front Plant Sci. 9, 1763 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Jensen, E. S., Carlsson, G. & Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron. Sustain. Dev. 40, 5 (2020).

    Article 

    Google Scholar 

  • 4.

    Jannoura, R., Joergensen, R. G. & Bruns, C. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Eur. J. Agron. 52, 259–270 (2014).

    Article 

    Google Scholar 

  • 5.

    Darch, T. et al. Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability. Plant Soil 427, 125–138 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Monti, M., Pellicanò, A., Santonoceto, C., Preiti, G. & Pristeri, A. Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crops Res. 196, 379–388 (2016).

    Article 

    Google Scholar 

  • 7.

    Scalise, A., Pappa, V. A., Gelsomino, A. & Rees, R. M. Pea cultivar and wheat residues affect carbon/nitrogen dynamics in pea-triticale intercropping: a microcosms approach. Sci. Tot. Environ. 592, 436–450 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Bedoussac, L. et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 35, 911–935 (2015).

    Article 

    Google Scholar 

  • 9.

    Garcia, K., Doidy, J., Zimmermann, S. D., Wipf, D. & Courty, P. E. Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci. 21, 937–950 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Oelbermann, M., Regehr, A. & Echarte, L. Changes in soil characteristics after six seasons of cereal–legume intercropping in the Southern Pampa. Geoderma Reg. 4, 100–107 (2015).

    Article 

    Google Scholar 

  • 11.

    Wichern, F., Eberhardt, E., Mayer, J., Joergensen, R. G. & Müller, T. Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol. Biochem. 40, 30–48 (2008).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Pausch, J., Tian, J., Riederer, M. & Kuzyakov, Y. Estimation of rhizodeposition at field scale: upscaling of a 14C labeling study. Plant Soil 364, 273–285 (2013).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Fustec, J., Lesuffleur, F., Mahieu, S. & Cliquet, J. B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 30, 57–66 (2010).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Hupe, A. et al. Get on your boots: estimating root biomass and rhizodeposition of peas under field conditions reveals the necessity of field experiments. Plant Soil 443, 449–462 (2019).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Jones, D. L., Hodge, A. & Kuzyakov, Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163, 459–480 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Hupe, A. et al. Even flow? Changes of carbon and nitrogen release from pea roots over time. Plant Soil 431, 143–157 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    He, X., Xu, M., Qiu, C. Y. & Zhou, J. Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J. Plant Ecol. 2, 107–118 (2009).

    Article 

    Google Scholar 

  • 19.

    Pepe, A., Giovannetti, M. & Sbrana, C. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Sci. Rep. 8, 10235 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Xiao, Y., Li, L. & Zhang, F. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant Soil 262, 45–54 (2004).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Thilakarathna, M. S., McElroy, M. S., Chapagain, T., Papadopoulos, Y. A. & Raizada, M. N. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agron. Sustain. Dev. 36, 58 (2016).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Meng, L. et al. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci. 6, 339 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Shao, Z. et al. Root contact between maize and alfalfa facilitates nitrogen transfer and uptake using techniques of foliar 15N-labeling. Agronomy 10, 360 (2020).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. & Gianinazzi, S. First report of non-mycorrhizal plant mutants (Myc−) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 60, 215–222 (1989).

    Article 

    Google Scholar 

  • 25.

    Kleikamp, B. & Joergensen, R. G. Evaluation of arbuscular mycorrhiza with symbiotic and nonsymbiotic pea isolines at three sites in the Alentejo, Portugal. J. Plant Nutr. Soil Sci. 169, 661–669 (2006).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Jannoura, R., Kleikamp, B., Dyckmans, J. & Joergensen, R. G. Impact of pea growth and of arbuscular mycorrhizal fungi on the decomposition of 15N-labeled maize residues. Biol. Fertil. Soils 48, 547–560 (2012).

    Article 

    Google Scholar 

  • 27.

    Chalk, P. M. et al. Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol. Biochem. 73, 10–21 (2014).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Wahbi, S. et al. Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis. Appl. Soil Ecol. 107, 91–98 (2016).

    Article 

    Google Scholar 

  • 29.

    Ingraffia, R., Amato, G., Frenda, A. S. & Giambalvo, D. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS ONE 14, e0213672 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Fusconi, A. Regulation of root morphogenesis in arbuscular mycorrhizae, what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation. Ann. Bot. 113, 19–33 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Wang, W. et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10, 1147–1158 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Xue, Y. et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann. Bot. 117, 363–377 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Abdelhalim, T., Jannoura, R. & Joergensen, R. G. Mycorrhiza response and phosphorus acquisition efficiency of sorghum cultivars differing in strigolactone composition. Plant Soil 437, 55–63 (2019).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Louarn, G. et al. The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil 389, 289–305 (2015).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Faust, S., Kaiser, K., Wiedner, K., Glaser, B. & Joergensen, R. G. Comparison of different methods to determine lignin concentration and quality in herbaceous and woody plant residues. Plant Soil 433, 7–18 (2018).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Baldrian, P. et al. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338, 1–15 (2011).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Wichern, F., Andreeva, D., Joergensen, R. G. & Kuzyakov, Y. Distribution of applied 14C and 15N in legumes using two different labelling methods. J. Plant Nutr. Soil Sci. 174, 732–741 (2011).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Turner, T. R. et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7, 2248–2258 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Yu, L., Nicolaisen, M., Larsen, J. & Ravnskov, S. Molecular characterization of root-associated fungal communities in relation to health status of Pisum sativum using barcoded pyrosequencing. Plant Soil 357, 395–405 (2012).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Gunina, A. & Kuzyakov, Y. Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol. Biochem. 90, 87–100 (2015).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Allison, S. D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8, 626–635 (2005).

    Article 

    Google Scholar 

  • 42.

    Joergensen, R. G. & Wichern, F. Alive and kicking: why dormant soil microorganisms matter. Soil Biol. Biochem. 116, 419–430 (2018).

    CAS 
    Article 

    Google Scholar 

  • 43.

    IUSS Working Group. WRB World reference base for soil resources 2014 (update 2015), international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports (2015).

  • 44.

    Mahieu, S., Fustec, J., Jensen, E. S. & Crozat, Y. Does labelling frequency affect N rhizodeposition assessment using the cotton-wick method?. Soil Biol. Biochem. 41, 2236–2243 (2009).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Russell, C. A. & Fillery, I. R. P. Estimates of lupin below-ground biomass nitrogen, drymatter, and nitrogen turnover to wheat. Crop Pasture Sci. 47, 1047–1059 (1996).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Wichern, F., Mayer, J., Joergensen, R. & Müller, T. Evaluation of the wick method for in situ 13C and 15N labelling of annual plants using sugar-urea mixtures. Plant Soil 329, 105–115 (2010).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transact. Brit. Mycol. Soc. 55, 158–168 (1970).

    Article 

    Google Scholar 

  • 48.

    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen. A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Mueller, T., Joergensen, R. G. & Meyer, B. Estimation of soil microbial biomass C in the p resence of living roots by fumigation-extraction. Soil Biol. Biochem. 24, 179–181 (1992).

    Article 

    Google Scholar 

  • 51.

    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Hupe, A., Schulz, H., Bruns, C., Joergensen, R. G. & Wichern, F. Digging in the dirt—inadequacy of below-ground plant biomass quantification. Soil Biol. Biochem. 96, 137–144 (2016).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The land use–food–coronavirus nexus

    A performance evaluation of despiking algorithms for eddy covariance data