in

Vulnerability to climate change of a microendemic lizard species from the central Andes

  • 1.

    Møller, A., Fiedler, W. & Berthold, P. Effects of climate change on birds (Oxford University Press, 2010).

    Google Scholar 

  • 2.

    IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (The Intergovernmental Panel on Climate Change, 2018).

  • 3.

    Lovejoy, T. E., Hannah, L. & Wilson, E. O. Biodiversity and climate change (Yale University Press, 2019).

    Book 

    Google Scholar 

  • 4.

    Hughes, L. Biological consequences of global warming: is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Moore, N. Precipitation regimes and climate change. In Global Environmental Change (ed. Freedman, B.) 191–197 (Springer, Dordrecht, 2014).

    Google Scholar 

  • 6.

    Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments. Glob. Change Biol. 21, 2624–2633 (2015).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Tobias, A. & Díaz, J. Heat waves, human health, and climate change. In Global Environmental Change (ed. Freedman, B.) 447–453 (Springer, Dordrecht, 2014).

    Google Scholar 

  • 8.

    Freedman, B. Global Environmental Change (Springer, 2014).

    Book 

    Google Scholar 

  • 9.

    Hannah, L. Climate change biology 2nd edn. (Elsevier, 2014).

    Google Scholar 

  • 10.

    Gibbons, J. W. et al. The global decline of reptiles, Déjà Vu Amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience 50, 653–666 (2000).

  • 11.

    Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS ONE 6, e325 (2008).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Huey, R. B., Losos, J. B. & Moritz, C. Are Lizards Toast?. Science 328, 832–833 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Sinervo, B. et al. Erosion of lizard diversity by Climate Change and altered thermal niches. Science 328, 894–899 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Glick, P., Stein, B. A. & Edelson, N. A. Scanning the conservation horizon: A guide to climate change vulnerability assessment (National Wildlife Federation, 2011).

    Google Scholar 

  • 15.

    Parmesan, C. Climate and species’ range. Nature 382, 765–766 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 105, 11823–11826 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Zuckerberg, B., Woods, A. M. & Porter, W. F. Poleward shifts in breeding bird distributions in New York State. Glob. Change Biol. 15, 1866–1883 (2009).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Sodhi, N. S. & Ehrlich, P. R. Conservation Biology for all (Oxford University Press, 2010).

    Book 

    Google Scholar 

  • 20.

    Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).

    Article 

    Google Scholar 

  • 21.

    Avery, R. A. Field studies of body temperatures and thermoregulation. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 93–166 (Academic Press, New York, 1982).

    Google Scholar 

  • 22.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).

    Book 

    Google Scholar 

  • 23.

    Huey, R. B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 25–91 (Academic Press, New York, 1982).

    Google Scholar 

  • 24.

    Angilletta, M. J. Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).

    Article 

    Google Scholar 

  • 25.

    Shine, R. Incubation regimes of cold-climate reptiles: the thermal consequences of nest-site choice, viviparity and maternal basking. Biol. J. Linn. Soc. 83, 145–155 (2004).

    Article 

    Google Scholar 

  • 26.

    Shine, R. Life-history evolution in Reptiles. Ann. Rev. Ecol. Evol. Syst. 36, 23–46 (2005).

    Article 

    Google Scholar 

  • 27.

    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).

    Article 

    Google Scholar 

  • 28.

    Bennett, A. F. The thermal dependence of lizard behaviour. Anim. Behav. 28, 752–762 (1980).

    Article 

    Google Scholar 

  • 29.

    Christian, K. A. & Tracy, C. R. The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218–223 (1981).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Snell, H. L., Jennings, R. D., Snell, H. M. & Harcourt, S. Intrapopulation variation in predator-avoidance performance of Galápagos lava lizards: The interaction of sexual and natural selection. Evol. Ecol. 2, 353–369 (1988).

    Article 

    Google Scholar 

  • 31.

    Robson, M. A. & Miles, D. B. Locomotor performance and dominance in male Tree Lizards, Urosaurus ornatus. Funct. Ecol. 14, 338–344 (2000).

    Article 

    Google Scholar 

  • 32.

    Perry, G., LeVering, K., Girard, I. & Garland, T. Locomotor performance and social dominance in male Anolis cristatellus. Anim. Behav. 67, 37–47 (2004).

    Article 

    Google Scholar 

  • 33.

    Cowles, R. B. & Bogert, C. M. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 265–296 (1944).

    Google Scholar 

  • 34.

    Bartholomew, G. A. Physiological control of body temperature. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 167–211 (Academic Press, New York, 1982).

    Google Scholar 

  • 35.

    Beaupre, S. J. Effects of geographically variable thermal environment on bioenergetics of mottled rock rattlesnakes. Ecology 76, 1655–1665 (1995).

    Article 

    Google Scholar 

  • 36.

    Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Huey, R. B. Behavioral thermoregulation in lizards: importance of associated costs. Science 184, 1001 (1974).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Hertz, P. E., Huey, R. B. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms: The fallacy of the inappropriate question. Am. Nat. 142, 796–818 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Vitt, L. & Caldwell, J. Herpetology: An introductory biology of amphibians and reptiles 4th edn. (Elsevier, 2014).

    Google Scholar 

  • 40.

    Ortega, Z., Mencía, A. & Pérez-Mellado, V. Sexual differences in behavioral thermoregulation of the lizard Scelarcis perspicillata. J. Therm. Biol. 61, 44–49 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Rodríguez-Serrano, E., Navas, C. A. & Bozinovic, F. The comparative field body temperature among Liolaemus lizards: Testing the static and the labile hypotheses. J. Therm. Biol. 34, 306–309 (2009).

    Article 

    Google Scholar 

  • 42.

    Telemeco, R. S., Radder, R. S., Baird, T. A. & Shine, R. Thermal effects on reptile reproduction: Adaptation and phenotypic plasticity in a montane lizard. Biol. J. Linn. Soc. 100, 642–655 (2010).

    Article 

    Google Scholar 

  • 43.

    Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus Lizards: Adaptation, phylogenetic inertia, and niche tracking. Am. Nat. 174, 204–220 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. Biol. Sci. 276, 1939–1948 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105, 6668–6672 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Bestion, E., Teyssier, A., Richard, M., Clobert, J. & Cote, J. Live fast, die young: Experimental evidence of population extinction risk due to climate change. PLoS ONE 13, e1002281 (2015).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Zhang, L., Yang, F. & Zhu, W.-L. Evidence for the ‘rate-of-living’ hypothesis between mammals and lizards, but not in birds, with field metabolic rate. Comp. Biochem. Physiol. Part A 253, 110867 (2021).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Sinervo, B. et al. Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai—Tibetan Plateau. Integr. Zool. 13, 450–470 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Ibarguengoytía, N. R. et al. Looking at the past to infer into the future: Thermal traits track environmental change in Liolaemidae. Evolution https://doi.org/10.1111/evo.14246 (2021)

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Beniston, M. Climate change in mountain regions: A review of possible impacts. Clim. Change 59, 5–31 (2003).

    Article 

    Google Scholar 

  • 53.

    Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Martínez Carretero, E. La Puna argentina: Delimitación general y división en distritos florísticos. Bol. Soc. Argent. Bot. 31, 27–40 (1995).

    Google Scholar 

  • 55.

    Esquerré, D., Brennan, I. G., Catullo, R. A., Torres-Pérez, F. & Keogh, J. S. How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution 73, 214–230 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Abdala, C. S., Laspiur, A. & Langstroth, R. Las especies del género Liolaemus (Liolaemidae). Lista de taxones y comentarios sobre los cambios taxonómicos más recientes. Cuad. Herp. 35, 193–223 (2021).

    Google Scholar 

  • 57.

    Abdala, C. S. et al. Unravelling interspecific relationships among highland lizards: First phylogenetic hypothesis using total evidence of the Liolaemus montanus group (Iguania: Liolaemidae). Zool. J. Linn. Soc. 189, 349–377 (2020).

    Article 

    Google Scholar 

  • 58.

    Cabrera, M. R. & Monguillot, J. C. A new Andean species of Liolaemus of the darwinii complex (Reptilia: Iguanidae). Zootaxa 1106, 35–43 (2006).

    Article 

    Google Scholar 

  • 59.

    Abdala, C. S. et al. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuad. Herp. 26, 215–248 (2012).

    Google Scholar 

  • 60.

    Avila, L. J. Liolaemus montanezi. The IUCN Red List of Threatened Species 2016: e.T56077261A56077269. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T56077261A56077269.en (2016).

  • 61.

    Barros, V. R. et al. Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Change 6, 151–169 (2015).

    Article 

    Google Scholar 

  • 62.

    IPCC. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifh Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, 2014).

  • 63.

    Bury, R. B. Natural history, field ecology, conservation biology and wildlife management: time to connect the dots. Herp. Con. Biol. 1, 56–61 (2006).

    Google Scholar 

  • 64.

    Fei, T. et al. A body temperature model for lizards as estimated from the thermal environment. J. Therm. Biol. 37, 56–64 (2012).

    Article 

    Google Scholar 

  • 65.

    Ortega, Z. et al. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. J. Trop. Ecol. 35, 149–156 (2019).

    Article 

    Google Scholar 

  • 66.

    Bujes, C. S. & Verrastro, L. Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae) in the coastal sand dunes of Rio Grande do Sul, Brazil. Braz. J. Biol. 66, 945–954 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Almeida-Santos, P., Militão, C. M., Nogueira-Costa, P., Menezes, V. A. & Rocha, C. F. D. Thermal ecology of five remaining populations of an endangered lizard (Liolaemus lutzae) in different restinga habitats in Brazil. J. Coast. Conserv. 19, 335–343 (2015).

    Article 

    Google Scholar 

  • 68.

    Liz, A. V., Santos, V., Ribeiro, T., Guimarães, M. & Verrastro, L. Are lizards sensitive to anomalous seasonal temperatures? Long-term thermobiological variability in a subtropical species. PLoS ONE 14, e0226399 (2019).

    Article 
    CAS 

    Google Scholar 

  • 69.

    Martori, R., Bignolo, P. & Cardinale, L. Relaciones térmicas en una población de Liolaemus wiegmannii (Iguania: Tropiduridae). Rev. Esp. Herpetol. 12, 19–26 (1998).

    Google Scholar 

  • 70.

    Martori, R., Aun, L. & Orlandini, S. Relaciones térmicas temporales en una población de Liolaemus koslowskyi. Cuad. Herp. 16, 33–45 (2002).

    Google Scholar 

  • 71.

    Cánovas, M. G., Villavicencio, H. J. & Acosta, J. C. Liolaemus olongasta (NCN) Body temperature. Herp. Rev. 37, 87–88 (2006).

    Google Scholar 

  • 72.

    Villavicencio, H., Acosta, J., Cánovas, M. & Marinero, J. Thermal ecology of a population of the lizard, Liolaemus pseudoanomalus in western Argentina. Amphibia-Reptilia 28, 163–165 (2007).

    Article 

    Google Scholar 

  • 73.

    Ibargüengoytía, N. R. et al. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35, 21–27 (2010).

    Article 

    Google Scholar 

  • 74.

    Castillo, G. N., Villavicencio, H. J., Acosta, J. C. & Marinero, J. A. Temperatura corporal de campo y actividad temporal de las lagartijas Liolaemus vallecurensis y Liolaemus ruibali en clima riguroso de los Andes centrales de Argentina. Multequina 24, 19–31 (2015).

    Google Scholar 

  • 75.

    Laspiur, A., Villavicencio, H. J. & Acosta, J. C. Liolaemus chacoensis (NCN). Body temperature. Herp. Rev. 38, 458–459 (2007).

    Google Scholar 

  • 76.

    Salva, A. G., Robles, C. I. & Tulli, M. J. Thermal biology of Liolaemus scapularis (Iguania:Liolaemidae) from argentinian northwest. J. Therm. Biol 98, 102924 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 77.

    Mesinger, F., Jovic, D., Chou, S. C., Gomes, J. L. & Bustamante, J. F. Wind forecast around the Andes using the sloping discretization of the eta coordinate. in Proceedings of the 8th International Conference on Southern Hemisphere Meteorology and Oceanography 1837–1848 (INPE, 2006).

  • 78.

    Sannolo, M. & Carretero, M. A. Dehydration constrains thermoregulation and space use in lizards. PLoS ONE 14, e0220384 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Nicholson, K. L. et al. The influence of temperatura and humidity on activity patterns of the lizards Anolis stratulus and Ameiva exsul in the British Virgin Islands. Caribb. J. Sci. 41, 870–873 (2005).

    Google Scholar 

  • 80.

    Adolph, A. S. & Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Bakken, G. S., Santee, W. R. & Erskine, D. Operative and standard operative temperature: Tools for thermal energetics studies. Am. Zool. 25, 933–943 (1985).

    Article 

    Google Scholar 

  • 82.

    Black, I. R. G., Berman, J. M., Cadena, V. C. & Tattersall, G. J. Behavioral thermoregulation in lizards. Strategies for achieving preferred temperature. In Behavior of lizards. Evolutionary and mechanistic perspectives (eds Bels, V. L. & Russell, A. P.) 13–46 (CRC Press, Florida, 2019).

    Google Scholar 

  • 83.

    Pirtle, E. I., Tracy, C. R. & Kearney, M. R. Hydroregulation. A neglected behavioral response of lizards to climate change? In Behavior of Lizards. Evolutionary and mechanistic perspectives (eds Bels, V. L. & Russell, A. P.) 343–374 (CRC Press, Florida, 2019).

    Google Scholar 

  • 84.

    Medina, M. et al. Thermal biology of genus Liolaemus: A phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 37, 579–586 (2012).

    Article 

    Google Scholar 

  • 85.

    Blouin-Demers, G. & Weatherhead, P. J. Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82, 3025–3043 (2001).

    Article 

    Google Scholar 

  • 86.

    Cabezas-Cartes, F., Fernández, J. B., Duran, F. & Kubisch, E. L. Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard. PeerJ 7, e7437 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Obregón, R. L., Scolaro, J. A., Ibargüengoytía, N. R. & Medina, M. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change? Integr. Zool. 16, 53–66 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Litmer, A. R. & Murray, C. M. Critical thermal tolerance of invasion: Comparative niche breadth of two invasive lizards. J. Therm. Biol. 86, 102432 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Bels, V. L. & Russell, A. P. Behavior of lizards. Evoutionary and mechanistic perspectives (CRC Press, Florida, 2019).

    Book 

    Google Scholar 

  • 90.

    Panda, B. B., Achary, V. M., Mahanty, S. & Panda, K. K. Plant adaptation to abiotic and genotoxic stress: Relevance to climate change and evolution. In Climate Change and plant abiotic stress tolerance (eds Tuteja, N. & Gill, S. S.) 251–294 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014).

    Google Scholar 

  • 91.

    Kiesling, R. Flora de San Juan, República Argentina Vol. 1 (Vázquez Mazzini, Buenos Aires, 1994).

    Google Scholar 

  • 92.

    Köeppen, V. P. Climatología. Con un estudio de los climas de la tierra (Fondo de Cultura Económica, Pánuco, México, DF, 1948).

    Google Scholar 

  • 93.

    Bakken, G. S. Measurements and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194–216 (1992).

    Article 

    Google Scholar 

  • 94.

    Cecchetto, N. R., Medina, S. M., Taussig, S. & Ibargüengoytía, N. R. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. Can. J. Zool. 97, 773–782 (2019).

    Article 

    Google Scholar 

  • 95.

    Cecchetto, N. R., Medina, S. M. & Ibargüengoytía, N. R. Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus. Sci. Rep. 10, 14732 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Mahoney, J. J. & Hutchison, V. H. Photoperiod acclimation and 24-hour variations in the critical thermal maxima of a tropical and a temperate frog. Oecologia 2, 143–161 (1969).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Christian, K. A. & Weavers, B. W. Thermoregulation of monitor lizards in Australia: An evaluation of methods in thermal biology. Ecol. Monogr. 66, 139–157 (1996).

    Article 

    Google Scholar 

  • 98.

    Camacho, A. et al. Measuring behavioral thermal tolerance to address hot topics in ecology, evolution, and conservation. J. Therm. Biol. 73, 71–79 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Clusella-Trullas, S. & Chown, S. L. Lizard thermal trait variation at multiple scales: a review. J. Comp. Physiol. B 184, 5–21 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. USA 111, 5610–5615 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and practice of statistics in biological research 3rd edn. (Freeman W.H, 1995).

    MATH 

    Google Scholar 

  • 102.

    Kovach, W. Oriana ver. 4.0. Software. (Kovach Computing Services, 2001).

  • 103.

    Fitzgerald, L. A., Cruz, F. B. & Perotti, G. Phenology of a lizard assemblage in the dry Chaco of Argentina. J. Herpetol. 33, 526–535 (1999).

    Article 

    Google Scholar 

  • 104.

    Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Educ. 64, 79–93 (1995).

    Article 

    Google Scholar 

  • 105.

    García Pérez, M. A. & Núñez Antón, V. Cellwise residual analysis in two-way contingency tables. Educ. Psychol. Meas. 65, 825–839 (2003).

    MathSciNet 
    Article 

    Google Scholar 

  • 106.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).

    Article 

    Google Scholar 

  • 107.

    Bohonak, A. J. & van Der Linde, K. RMA for JAVA Software for Reduced Major Axis regression. ver. 1.21. (2004).

  • 108.

    Baty, F. et al. A toolbox for nonlinear regression in R: The Package nlstools. J. Stat. Softw. 5, 1–21 (2015).

    Google Scholar 

  • 109.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2019).

  • 110.

    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package ver. 3.4.6. (2020).

  • 111.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package ver. 1.1-4. (2017).

  • 112.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package ver. 3.4-5. (2020).


  • Source: Ecology - nature.com

    Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil

    From gas to solar, bringing meaningful change to Nigeria’s energy systems