Møller, A., Fiedler, W. & Berthold, P. Effects of climate change on birds (Oxford University Press, 2010).
IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (The Intergovernmental Panel on Climate Change, 2018).
Lovejoy, T. E., Hannah, L. & Wilson, E. O. Biodiversity and climate change (Yale University Press, 2019).
Google Scholar
Hughes, L. Biological consequences of global warming: is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).
Google Scholar
Moore, N. Precipitation regimes and climate change. In Global Environmental Change (ed. Freedman, B.) 191–197 (Springer, Dordrecht, 2014).
Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments. Glob. Change Biol. 21, 2624–2633 (2015).
Google Scholar
Tobias, A. & Díaz, J. Heat waves, human health, and climate change. In Global Environmental Change (ed. Freedman, B.) 447–453 (Springer, Dordrecht, 2014).
Freedman, B. Global Environmental Change (Springer, 2014).
Google Scholar
Hannah, L. Climate change biology 2nd edn. (Elsevier, 2014).
Gibbons, J. W. et al. The global decline of reptiles, Déjà Vu Amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience 50, 653–666 (2000).
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS ONE 6, e325 (2008).
Google Scholar
Huey, R. B., Losos, J. B. & Moritz, C. Are Lizards Toast?. Science 328, 832–833 (2010).
Google Scholar
Sinervo, B. et al. Erosion of lizard diversity by Climate Change and altered thermal niches. Science 328, 894–899 (2010).
Google Scholar
Glick, P., Stein, B. A. & Edelson, N. A. Scanning the conservation horizon: A guide to climate change vulnerability assessment (National Wildlife Federation, 2011).
Parmesan, C. Climate and species’ range. Nature 382, 765–766 (1996).
Google Scholar
Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).
Google Scholar
Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 105, 11823–11826 (2008).
Google Scholar
Zuckerberg, B., Woods, A. M. & Porter, W. F. Poleward shifts in breeding bird distributions in New York State. Glob. Change Biol. 15, 1866–1883 (2009).
Google Scholar
Sodhi, N. S. & Ehrlich, P. R. Conservation Biology for all (Oxford University Press, 2010).
Google Scholar
Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
Google Scholar
Avery, R. A. Field studies of body temperatures and thermoregulation. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 93–166 (Academic Press, New York, 1982).
Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
Google Scholar
Huey, R. B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 25–91 (Academic Press, New York, 1982).
Angilletta, M. J. Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).
Google Scholar
Shine, R. Incubation regimes of cold-climate reptiles: the thermal consequences of nest-site choice, viviparity and maternal basking. Biol. J. Linn. Soc. 83, 145–155 (2004).
Google Scholar
Shine, R. Life-history evolution in Reptiles. Ann. Rev. Ecol. Evol. Syst. 36, 23–46 (2005).
Google Scholar
Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).
Google Scholar
Bennett, A. F. The thermal dependence of lizard behaviour. Anim. Behav. 28, 752–762 (1980).
Google Scholar
Christian, K. A. & Tracy, C. R. The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218–223 (1981).
Google Scholar
Snell, H. L., Jennings, R. D., Snell, H. M. & Harcourt, S. Intrapopulation variation in predator-avoidance performance of Galápagos lava lizards: The interaction of sexual and natural selection. Evol. Ecol. 2, 353–369 (1988).
Google Scholar
Robson, M. A. & Miles, D. B. Locomotor performance and dominance in male Tree Lizards, Urosaurus ornatus. Funct. Ecol. 14, 338–344 (2000).
Google Scholar
Perry, G., LeVering, K., Girard, I. & Garland, T. Locomotor performance and social dominance in male Anolis cristatellus. Anim. Behav. 67, 37–47 (2004).
Google Scholar
Cowles, R. B. & Bogert, C. M. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 265–296 (1944).
Bartholomew, G. A. Physiological control of body temperature. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 167–211 (Academic Press, New York, 1982).
Beaupre, S. J. Effects of geographically variable thermal environment on bioenergetics of mottled rock rattlesnakes. Ecology 76, 1655–1665 (1995).
Google Scholar
Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).
Google Scholar
Huey, R. B. Behavioral thermoregulation in lizards: importance of associated costs. Science 184, 1001 (1974).
Google Scholar
Hertz, P. E., Huey, R. B. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms: The fallacy of the inappropriate question. Am. Nat. 142, 796–818 (1993).
Google Scholar
Vitt, L. & Caldwell, J. Herpetology: An introductory biology of amphibians and reptiles 4th edn. (Elsevier, 2014).
Ortega, Z., Mencía, A. & Pérez-Mellado, V. Sexual differences in behavioral thermoregulation of the lizard Scelarcis perspicillata. J. Therm. Biol. 61, 44–49 (2016).
Google Scholar
Rodríguez-Serrano, E., Navas, C. A. & Bozinovic, F. The comparative field body temperature among Liolaemus lizards: Testing the static and the labile hypotheses. J. Therm. Biol. 34, 306–309 (2009).
Google Scholar
Telemeco, R. S., Radder, R. S., Baird, T. A. & Shine, R. Thermal effects on reptile reproduction: Adaptation and phenotypic plasticity in a montane lizard. Biol. J. Linn. Soc. 100, 642–655 (2010).
Google Scholar
Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus Lizards: Adaptation, phylogenetic inertia, and niche tracking. Am. Nat. 174, 204–220 (2009).
Google Scholar
Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. Biol. Sci. 276, 1939–1948 (2009).
Google Scholar
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105, 6668–6672 (2008).
Google Scholar
Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).
Google Scholar
Bestion, E., Teyssier, A., Richard, M., Clobert, J. & Cote, J. Live fast, die young: Experimental evidence of population extinction risk due to climate change. PLoS ONE 13, e1002281 (2015).
Google Scholar
Zhang, L., Yang, F. & Zhu, W.-L. Evidence for the ‘rate-of-living’ hypothesis between mammals and lizards, but not in birds, with field metabolic rate. Comp. Biochem. Physiol. Part A 253, 110867 (2021).
Google Scholar
Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).
Google Scholar
Sinervo, B. et al. Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai—Tibetan Plateau. Integr. Zool. 13, 450–470 (2018).
Google Scholar
Ibarguengoytía, N. R. et al. Looking at the past to infer into the future: Thermal traits track environmental change in Liolaemidae. Evolution https://doi.org/10.1111/evo.14246 (2021)
Google Scholar
Beniston, M. Climate change in mountain regions: A review of possible impacts. Clim. Change 59, 5–31 (2003).
Google Scholar
Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).
Google Scholar
Martínez Carretero, E. La Puna argentina: Delimitación general y división en distritos florísticos. Bol. Soc. Argent. Bot. 31, 27–40 (1995).
Esquerré, D., Brennan, I. G., Catullo, R. A., Torres-Pérez, F. & Keogh, J. S. How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution 73, 214–230 (2019).
Google Scholar
Abdala, C. S., Laspiur, A. & Langstroth, R. Las especies del género Liolaemus (Liolaemidae). Lista de taxones y comentarios sobre los cambios taxonómicos más recientes. Cuad. Herp. 35, 193–223 (2021).
Abdala, C. S. et al. Unravelling interspecific relationships among highland lizards: First phylogenetic hypothesis using total evidence of the Liolaemus montanus group (Iguania: Liolaemidae). Zool. J. Linn. Soc. 189, 349–377 (2020).
Google Scholar
Cabrera, M. R. & Monguillot, J. C. A new Andean species of Liolaemus of the darwinii complex (Reptilia: Iguanidae). Zootaxa 1106, 35–43 (2006).
Google Scholar
Abdala, C. S. et al. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuad. Herp. 26, 215–248 (2012).
Avila, L. J. Liolaemus montanezi. The IUCN Red List of Threatened Species 2016: e.T56077261A56077269. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T56077261A56077269.en (2016).
Barros, V. R. et al. Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Change 6, 151–169 (2015).
Google Scholar
IPCC. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifh Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, 2014).
Bury, R. B. Natural history, field ecology, conservation biology and wildlife management: time to connect the dots. Herp. Con. Biol. 1, 56–61 (2006).
Fei, T. et al. A body temperature model for lizards as estimated from the thermal environment. J. Therm. Biol. 37, 56–64 (2012).
Google Scholar
Ortega, Z. et al. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. J. Trop. Ecol. 35, 149–156 (2019).
Google Scholar
Bujes, C. S. & Verrastro, L. Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae) in the coastal sand dunes of Rio Grande do Sul, Brazil. Braz. J. Biol. 66, 945–954 (2006).
Google Scholar
Almeida-Santos, P., Militão, C. M., Nogueira-Costa, P., Menezes, V. A. & Rocha, C. F. D. Thermal ecology of five remaining populations of an endangered lizard (Liolaemus lutzae) in different restinga habitats in Brazil. J. Coast. Conserv. 19, 335–343 (2015).
Google Scholar
Liz, A. V., Santos, V., Ribeiro, T., Guimarães, M. & Verrastro, L. Are lizards sensitive to anomalous seasonal temperatures? Long-term thermobiological variability in a subtropical species. PLoS ONE 14, e0226399 (2019).
Google Scholar
Martori, R., Bignolo, P. & Cardinale, L. Relaciones térmicas en una población de Liolaemus wiegmannii (Iguania: Tropiduridae). Rev. Esp. Herpetol. 12, 19–26 (1998).
Martori, R., Aun, L. & Orlandini, S. Relaciones térmicas temporales en una población de Liolaemus koslowskyi. Cuad. Herp. 16, 33–45 (2002).
Cánovas, M. G., Villavicencio, H. J. & Acosta, J. C. Liolaemus olongasta (NCN) Body temperature. Herp. Rev. 37, 87–88 (2006).
Villavicencio, H., Acosta, J., Cánovas, M. & Marinero, J. Thermal ecology of a population of the lizard, Liolaemus pseudoanomalus in western Argentina. Amphibia-Reptilia 28, 163–165 (2007).
Google Scholar
Ibargüengoytía, N. R. et al. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35, 21–27 (2010).
Google Scholar
Castillo, G. N., Villavicencio, H. J., Acosta, J. C. & Marinero, J. A. Temperatura corporal de campo y actividad temporal de las lagartijas Liolaemus vallecurensis y Liolaemus ruibali en clima riguroso de los Andes centrales de Argentina. Multequina 24, 19–31 (2015).
Laspiur, A., Villavicencio, H. J. & Acosta, J. C. Liolaemus chacoensis (NCN). Body temperature. Herp. Rev. 38, 458–459 (2007).
Salva, A. G., Robles, C. I. & Tulli, M. J. Thermal biology of Liolaemus scapularis (Iguania:Liolaemidae) from argentinian northwest. J. Therm. Biol 98, 102924 (2021).
Google Scholar
Mesinger, F., Jovic, D., Chou, S. C., Gomes, J. L. & Bustamante, J. F. Wind forecast around the Andes using the sloping discretization of the eta coordinate. in Proceedings of the 8th International Conference on Southern Hemisphere Meteorology and Oceanography 1837–1848 (INPE, 2006).
Sannolo, M. & Carretero, M. A. Dehydration constrains thermoregulation and space use in lizards. PLoS ONE 14, e0220384 (2019).
Google Scholar
Nicholson, K. L. et al. The influence of temperatura and humidity on activity patterns of the lizards Anolis stratulus and Ameiva exsul in the British Virgin Islands. Caribb. J. Sci. 41, 870–873 (2005).
Adolph, A. S. & Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).
Google Scholar
Bakken, G. S., Santee, W. R. & Erskine, D. Operative and standard operative temperature: Tools for thermal energetics studies. Am. Zool. 25, 933–943 (1985).
Google Scholar
Black, I. R. G., Berman, J. M., Cadena, V. C. & Tattersall, G. J. Behavioral thermoregulation in lizards. Strategies for achieving preferred temperature. In Behavior of lizards. Evolutionary and mechanistic perspectives (eds Bels, V. L. & Russell, A. P.) 13–46 (CRC Press, Florida, 2019).
Pirtle, E. I., Tracy, C. R. & Kearney, M. R. Hydroregulation. A neglected behavioral response of lizards to climate change? In Behavior of Lizards. Evolutionary and mechanistic perspectives (eds Bels, V. L. & Russell, A. P.) 343–374 (CRC Press, Florida, 2019).
Medina, M. et al. Thermal biology of genus Liolaemus: A phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 37, 579–586 (2012).
Google Scholar
Blouin-Demers, G. & Weatherhead, P. J. Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82, 3025–3043 (2001).
Google Scholar
Cabezas-Cartes, F., Fernández, J. B., Duran, F. & Kubisch, E. L. Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard. PeerJ 7, e7437 (2019).
Google Scholar
Obregón, R. L., Scolaro, J. A., Ibargüengoytía, N. R. & Medina, M. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change? Integr. Zool. 16, 53–66 (2021).
Google Scholar
Litmer, A. R. & Murray, C. M. Critical thermal tolerance of invasion: Comparative niche breadth of two invasive lizards. J. Therm. Biol. 86, 102432 (2019).
Google Scholar
Bels, V. L. & Russell, A. P. Behavior of lizards. Evoutionary and mechanistic perspectives (CRC Press, Florida, 2019).
Google Scholar
Panda, B. B., Achary, V. M., Mahanty, S. & Panda, K. K. Plant adaptation to abiotic and genotoxic stress: Relevance to climate change and evolution. In Climate Change and plant abiotic stress tolerance (eds Tuteja, N. & Gill, S. S.) 251–294 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014).
Kiesling, R. Flora de San Juan, República Argentina Vol. 1 (Vázquez Mazzini, Buenos Aires, 1994).
Köeppen, V. P. Climatología. Con un estudio de los climas de la tierra (Fondo de Cultura Económica, Pánuco, México, DF, 1948).
Bakken, G. S. Measurements and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194–216 (1992).
Google Scholar
Cecchetto, N. R., Medina, S. M., Taussig, S. & Ibargüengoytía, N. R. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. Can. J. Zool. 97, 773–782 (2019).
Google Scholar
Cecchetto, N. R., Medina, S. M. & Ibargüengoytía, N. R. Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus. Sci. Rep. 10, 14732 (2020).
Google Scholar
Mahoney, J. J. & Hutchison, V. H. Photoperiod acclimation and 24-hour variations in the critical thermal maxima of a tropical and a temperate frog. Oecologia 2, 143–161 (1969).
Google Scholar
Christian, K. A. & Weavers, B. W. Thermoregulation of monitor lizards in Australia: An evaluation of methods in thermal biology. Ecol. Monogr. 66, 139–157 (1996).
Google Scholar
Camacho, A. et al. Measuring behavioral thermal tolerance to address hot topics in ecology, evolution, and conservation. J. Therm. Biol. 73, 71–79 (2018).
Google Scholar
Clusella-Trullas, S. & Chown, S. L. Lizard thermal trait variation at multiple scales: a review. J. Comp. Physiol. B 184, 5–21 (2014).
Google Scholar
Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. USA 111, 5610–5615 (2014).
Google Scholar
Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and practice of statistics in biological research 3rd edn. (Freeman W.H, 1995).
Google Scholar
Kovach, W. Oriana ver. 4.0. Software. (Kovach Computing Services, 2001).
Fitzgerald, L. A., Cruz, F. B. & Perotti, G. Phenology of a lizard assemblage in the dry Chaco of Argentina. J. Herpetol. 33, 526–535 (1999).
Google Scholar
Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Educ. 64, 79–93 (1995).
Google Scholar
García Pérez, M. A. & Núñez Antón, V. Cellwise residual analysis in two-way contingency tables. Educ. Psychol. Meas. 65, 825–839 (2003).
Google Scholar
Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
Google Scholar
Bohonak, A. J. & van Der Linde, K. RMA for JAVA Software for Reduced Major Axis regression. ver. 1.21. (2004).
Baty, F. et al. A toolbox for nonlinear regression in R: The Package nlstools. J. Stat. Softw. 5, 1–21 (2015).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2019).
Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package ver. 3.4.6. (2020).
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package ver. 1.1-4. (2017).
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package ver. 3.4-5. (2020).
Source: Ecology - nature.com