in

Multi-community effects of organic and conventional farming practices in vineyards

  • 1.

    Díaz et al. Summary for Policymakers of the Global Assessment.pdf.

  • 2.

    Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evolut. 1, 1129–1135 (2017).

    Article 

    Google Scholar 

  • 3.

    Hendershot, J. N. et al. Intensive farming drives long-term shifts in avian community composition. Nature 579, 393–396 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Michael, D. R., Wood, J. T., O’Loughlin, T. & Lindenmayer, D. B. Influence of land sharing and land sparing strategies on patterns of vegetation and terrestrial vertebrate richness and occurrence in Australian endangered eucalypt woodlands. Agr. Ecosyst. Environ. 227, 24–32 (2016).

    Article 

    Google Scholar 

  • 6.

    Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61 (2014).

    Article 

    Google Scholar 

  • 7.

    Willer, E. H., Schlatter, B., Trávní, J., Kemper, L. & Lernoud, J. The World of Organic Agriculture Statistics and Emerging Trends 2020. 337.

  • 8.

    Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2 (2016).

  • 9.

    Connor, D. J. Organic agriculture cannot feed the world. Field Crop Res. 106, 187–190 (2008).

    Article 

    Google Scholar 

  • 10.

    Seufert, V. & Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).

  • 11.

    Smith, O. M. et al. Landscape context affects the sustainability of organic farming systems. Proc. Natl. Acad. Sci. 117, 2870–2878 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 42, 261–269 (2005).

    Article 

    Google Scholar 

  • 13.

    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLOS ONE 12, e0180442 (2017).

  • 16.

    Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline?. Trends Ecol. Evol. 26, 474–481 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Birkhofer, K., Ekroos, J., Corlett, E. B. & Smith, H. G. Winners and losers of organic cereal farming in animal communities across Central and Northern Europe. Biol. Cons. 175, 25–33 (2014).

    Article 

    Google Scholar 

  • 18.

    Mackie, K. A., Müller, T., Zikeli, S. & Kandeler, E. Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms. Soil Biol. Biochem. 65, 245–253 (2013).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Buchholz, J. et al. Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape. Sci. Rep. 7 (2017).

  • 20.

    Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).

    Article 

    Google Scholar 

  • 21.

    Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 365, 2959–2971 (2010).

    Article 

    Google Scholar 

  • 22.

    Peigné, J. et al. Earthworm populations under different tillage systems in organic farming. Soil Tillage Res. 104, 207–214 (2009).

    Article 

    Google Scholar 

  • 23.

    Biondi, A., Desneux, N., Siscaro, G. & Zappalà, L. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87, 803–812 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Mehrabi, Z., Seufert, V., Ramankutty, N. The conventional versus alternative agricultural divide: A response to Garibaldi et al. Trends Ecol. Evolut. 32, 720–721 (2017).

  • 25.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article 

    Google Scholar 

  • 26.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6 (2015).

  • 27.

    Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117, 354–361 (2008).

    Article 

    Google Scholar 

  • 28.

    Muneret, L., Auriol, A., Thiéry, D. & Rusch, A. Organic farming at local and landscape scales fosters biological pest control in vineyards. Ecol. Appl. 29, e01818 (2019).

  • 29.

    Gabriel, D. et al. Scale matters: The impact of organic farming on biodiversity at different spatial scales: Scale matters in organic farming. Ecol. Lett. 13, 858–869 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Agreste. Pratiques Phytosanitaires en Viticulture. Campagne 2016. (2020)

  • 31.

    Agreste. La Viticulture Bio en Nouvelle-Aquitaine: Un Dynamisme à Tous les Stades de la Filière. (2020).

  • 32.

    Gruber, S. & Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 105, 104–111 (2009).

    Article 

    Google Scholar 

  • 33.

    Pfingstmann, A. et al. Contrasting effects of tillage and landscape structure on spiders and springtails in vineyards. Sustainability 11, 2095 (2019).

    Article 

    Google Scholar 

  • 34.

    Dittmer, S. & Schrader, S. Longterm effects of soil compaction and tillage on Collembola and straw decomposition in arable soil. Pedobiologia 44, 527–538 (2000).

    Article 

    Google Scholar 

  • 35.

    Kolb, S., Uzman, D., Leyer, I., Reineke, A. & Entling, M. H. Differential effects of semi-natural habitats and organic management on spiders in viticultural landscapes. Agric. Ecosyst. Environ. 287, 106695 (2020).

  • 36.

    Birkhofer, K. et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Cons. 218, 247–253 (2018).

    Article 

    Google Scholar 

  • 37.

    Kratschmer, S. et al. Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?. Agric. Ecosyst. Environ. 266, 142–152 (2018).

    Article 

    Google Scholar 

  • 38.

    Ullmann, K. S., Meisner, M. H. & Williams, N. M. Impact of tillage on the crop pollinating, ground-nesting bee, Peponapis pruinosa in California. Agric. Ecosyst. Environ. 232, 240–246 (2016).

    Article 

    Google Scholar 

  • 39.

    Jiang, X., Wright, A. L., Wang, X. & Liang, F. Tillage-induced changes in fungal and bacterial biomass associated with soil aggregates: A long-term field study in a subtropical rice soil in China. Appl. Soil. Ecol. 48, 168–173 (2011).

    Article 

    Google Scholar 

  • 40.

    Zuber, S. M. & Villamil, M. B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 97, 176–187 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Luff, M. L. The biology of the ground beetle Harpalus rufipes in a strawberry field in Northumberland. Ann. Appl. Biol. 94, 153–164 (1980).

    Article 

    Google Scholar 

  • 42.

    Shearin, A. F., Reberg-Horton, S. C. & Gallandt, E. R. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Environ. Entomol. 36, 1140–1146 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 44.

    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Goded, S., Ekroos, J., Azcárate, J. G., Guitián, J. A. & Smith, H. G. Effects of organic farming on plant and butterfly functional diversity in mosaic landscapes. Agric. Ecosyst. Environ. 284, 106600 (2019).

  • 46.

    Rusch, A., Valantin-Morison, M., Sarthou, J.-P. & Roger-Estrade, J. Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc. Ecol. 26, 473–486 (2011).

    Article 

    Google Scholar 

  • 47.

    Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53, 233–241 (2016).

    Article 

    Google Scholar 

  • 48.

    Le Féon, V. et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agric. Ecosyst. Environ. 137, 143–150 (2010).

    Article 

    Google Scholar 

  • 49.

    Sousa, J. P. et al. Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. Pedobiologia 50, 147–156 (2006).

    Article 

    Google Scholar 

  • 50.

    Vanbergen, A. J. et al. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient. Oecologia 153, 713–725 (2007).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Lehmitz, R., Russell, D., Hohberg, K., Christian, A. & Xylander, W. E. R. Active dispersal of oribatid mites into young soils. Appl. Soil. Ecol. 55, 10–19 (2012).

    Article 

    Google Scholar 

  • 52.

    Concepción, E. D., Díaz, M. & Baquero, R. A. Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc. Ecol. 23, 135–148 (2008).

    Article 

    Google Scholar 

  • 53.

    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – Eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Naveed, M. et al. Simultaneous loss of soil biodiversity and functions along a copper contamination gradient: When soil goes to sleep. Soil Sci. Soc. Am. J. 78, 1239–1250 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Eijsackers, H., Beneke, P., Maboeta, M., Louw, J. P. E. & Reinecke, A. J. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol. Environ. Saf. 62, 99–111 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl. Acad. Sci. 117, 1573–1579 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 58.

    Muneret, L. et al. Organic farming expansion drives natural enemy abundance but not diversity in vineyard-dominated landscapes. Ecol. Evol. https://doi.org/10.1002/ece3.5810 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3 (2017).

  • 60.

    Le Féon, V. et al. Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric. Ecosyst. Environ. 166, 94–101 (2013).

    Article 

    Google Scholar 

  • 61.

    McCravy, K. & Ruholl, J. Bee (Hymenoptera: Apoidea) diversity and sampling methodology in a midwestern USA deciduous forest. Insects 8, 81 (2017).

    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Bano, R. & Roy, S. Extraction of Soil Microarthropods: A Low Cost Berlese-Tullgren Funnels Extractor. 4.

  • 63.

    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions: Multimodel inference. J. Evol. Biol. 24, 699–711 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    MathSciNet 
    Article 

    Google Scholar 

  • 65.

    Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).

  • 66.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).

  • 67.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020). R Package Version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa

  • 68.

    Bates, D., Maechler, M., Bolker, B., Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).


  • Source: Ecology - nature.com

    Beating in on a stable partnership

    Tiny particles power chemical reactions