in

Aquatic reservoir of Vibrio cholerae in an African Great Lake assessed by large scale plankton sampling and ultrasensitive molecular methods

  • 1.

    Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9, e0003832 (2015).

    Article 

    Google Scholar 

  • 3.

    Bompangue, D. N. et al. Lakes as source of cholera outbreaks, Democratic Republic of Congo. Emerg. Infect. Dis. 14, 798–800 (2008).

    Article 

    Google Scholar 

  • 4.

    Weill, F. X. et al. Genomic history of the seventh pandemic of cholera in Africa. Science 358, 785–789 (2017).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Hounmanou, Y. M. G. et al. Genomic insights into Vibrio cholerae O1 responsible for cholera epidemics in Tanzania between 1993 and 2017. PLoS Neglect Trop. D. 13, e0007934 (2019).

    Article 

    Google Scholar 

  • 6.

    Colwell, R. R. Global climate and infectious disease: the cholera paradigm. Science 274, 2025–2031 (1996).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Singleton, F., Attwell, R., Jangi, M. & Colwell, R. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio choleraein aquatic microcosms. Appl. Environ. Microbiol. 43, 1080–1085 (1982).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Kirschner, A. K. T. et al. Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: Dependence on temperature and dissolved organic carbon quality. Appl. Environ. Microb. 74, 2004–2015 (2008).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Reid, P. C. et al. The continuous plankton recorder: concepts and history, from Plankton Indicator to undulating recorders. Prog. Oceanogr. 57, 117–173 (2003).

    Article 

    Google Scholar 

  • 10.

    Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA. 113, E5062–E5071 (2016).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Huq, A. et al. Detection, isolation, and identification of Vibrio cholerae from the environment. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc06a05s26 (2012).

  • 12.

    Thompson, F. L. et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl. Environ. Microb. 71, 5107–5115 (2005).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Vezzulli, L. et al. GbpA as a novel qPCR target for the species-specific detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in environmental, stool, and historical continuous plankton recorder samples. s. PLoS ONE 10, e0123983 (2015).

    Article 

    Google Scholar 

  • 14.

    Alam, M. et al. Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh. Appl. Environ. Microb. 72, 2849–2855 (2006).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Senoh, M. et al. Isolation of viable but nonculturable Vibrio cholerae O1 from environmental water samples in Kolkata, India, in a culturable state. Microbiol. Open 3, 239–246 (2014).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Vezzulli, L. et al. Whole-genome enrichment provides deep insights into vibrio cholerae metagenome from an African river. Microb. Ecol. 73, 734–738 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Kaboré, S. et al. Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res Microbiol 169, 1–10 (2018).

    Article 

    Google Scholar 

  • 18.

    Bwire, G. et al. Environmental surveillance of Vibrio cholerae O1/O139 in the five African Great Lakes and other major surface water sources in Uganda. Front. Microbiol. 9, 1560 (2018).

    Article 

    Google Scholar 

  • 19.

    Vezzulli, L., Baker-Austin, C., Kirschner, A., Pruzzo, C. & Martinez-Urtaza, J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ. Microbiol. 22, 4342–4355 (2020).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Beating in on a stable partnership

    Tiny particles power chemical reactions