Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).
Google Scholar
Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9, e0003832 (2015).
Google Scholar
Bompangue, D. N. et al. Lakes as source of cholera outbreaks, Democratic Republic of Congo. Emerg. Infect. Dis. 14, 798–800 (2008).
Google Scholar
Weill, F. X. et al. Genomic history of the seventh pandemic of cholera in Africa. Science 358, 785–789 (2017).
Google Scholar
Hounmanou, Y. M. G. et al. Genomic insights into Vibrio cholerae O1 responsible for cholera epidemics in Tanzania between 1993 and 2017. PLoS Neglect Trop. D. 13, e0007934 (2019).
Google Scholar
Colwell, R. R. Global climate and infectious disease: the cholera paradigm. Science 274, 2025–2031 (1996).
Google Scholar
Singleton, F., Attwell, R., Jangi, M. & Colwell, R. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio choleraein aquatic microcosms. Appl. Environ. Microbiol. 43, 1080–1085 (1982).
Google Scholar
Kirschner, A. K. T. et al. Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: Dependence on temperature and dissolved organic carbon quality. Appl. Environ. Microb. 74, 2004–2015 (2008).
Google Scholar
Reid, P. C. et al. The continuous plankton recorder: concepts and history, from Plankton Indicator to undulating recorders. Prog. Oceanogr. 57, 117–173 (2003).
Google Scholar
Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA. 113, E5062–E5071 (2016).
Google Scholar
Huq, A. et al. Detection, isolation, and identification of Vibrio cholerae from the environment. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc06a05s26 (2012).
Thompson, F. L. et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl. Environ. Microb. 71, 5107–5115 (2005).
Google Scholar
Vezzulli, L. et al. GbpA as a novel qPCR target for the species-specific detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in environmental, stool, and historical continuous plankton recorder samples. s. PLoS ONE 10, e0123983 (2015).
Google Scholar
Alam, M. et al. Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh. Appl. Environ. Microb. 72, 2849–2855 (2006).
Google Scholar
Senoh, M. et al. Isolation of viable but nonculturable Vibrio cholerae O1 from environmental water samples in Kolkata, India, in a culturable state. Microbiol. Open 3, 239–246 (2014).
Google Scholar
Vezzulli, L. et al. Whole-genome enrichment provides deep insights into vibrio cholerae metagenome from an African river. Microb. Ecol. 73, 734–738 (2017).
Google Scholar
Kaboré, S. et al. Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res Microbiol 169, 1–10 (2018).
Google Scholar
Bwire, G. et al. Environmental surveillance of Vibrio cholerae O1/O139 in the five African Great Lakes and other major surface water sources in Uganda. Front. Microbiol. 9, 1560 (2018).
Google Scholar
Vezzulli, L., Baker-Austin, C., Kirschner, A., Pruzzo, C. & Martinez-Urtaza, J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ. Microbiol. 22, 4342–4355 (2020).
Google Scholar
Source: Ecology - nature.com