Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus civ stor nat Trieste 52, 5–135 (2006).
Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci Rep 8, 10575, https://doi.org/10.1038/s41598-018-28796-x (2018).
Google Scholar
Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: environmental variation or shift of habitat selection? PeerJ 3, e1122, https://doi.org/10.7717/peerj.1122 (2015).
Google Scholar
Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 1–11, https://doi.org/10.1111/ecog.04798 (2020).
Google Scholar
Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats 2nd edn (Oxford University Press, 2019).
Bradley, J. G. & Eason, P. K. Predation risk and microhabitat selection by cave salamanders, Eurycea lucifuga (Rafinesque, 1822). Behaviour 155, 841–859, https://doi.org/10.1163/1568539X-00003505 (2019).
Google Scholar
Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. The Science of Nature 104, 20, https://doi.org/10.1007/s00114-017-1443-y (2017).
Google Scholar
Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: how do responses vary in amphibians adapted to cave living? Behavioral Ecology and Sociobiology 74, 126, https://doi.org/10.1007/s00265-020-02909-x (2020).
Google Scholar
Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci Data 5, 180083, https://doi.org/10.1038/sdata.2018.83 (2018).
Google Scholar
Lunghi, E. & Bruni, G. Long-term reliability of Visual Implant Elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).
Mace, G. M. & Lande, R. Assessing extinction threats: towards a reevaluation of IUCN threatened species categories. Conservation Biology 5, 148–157 (1991).
Google Scholar
Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transaction of the Royal Society B 367, 1665–1679, https://doi.org/10.1098/rstb.2012.0005 (2012).
Google Scholar
Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani. (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).
European Community. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union L 206/7, 1–44 (1992).
Régnier, C. et al. Mass extinction in poorly known taxa. Proc Natl Acad Sci USA 112, 7761–7766, https://doi.org/10.1073/pnas.1502350112 (2015).
Google Scholar
Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786, https://doi.org/10.1126/science.1103538 (2004).
Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol Lett 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x (2012).
Google Scholar
Connette, G. M., Crawford, J. A. & Peterman, A. E. Climate change and shrinking salamanders: alternative mechanisms for changes in plethodontid salamander body size. Global Change Biology 21, 2834–2843, https://doi.org/10.1111/gcb.12883 (2015).
Google Scholar
Heinrichs, J. A., Bender, D. J. & Schumaker, N. H. Habitat degradation and loss as key drivers of regional population extinction. Ecological Modelling 335, 64–73, https://doi.org/10.1016/j.ecolmodel.2016.05.009 (2016).
Google Scholar
Walters, R. J., Blanckenhorn, W. U. & Berger, D. Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology 26, 1324–1338, https://doi.org/10.1111/j.1365-2435.2012.02045.x (2012).
Google Scholar
Zhang, Z. et al. Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biology 65, 971–980, https://doi.org/10.1111/fwb.13483 (2020).
Google Scholar
Bland, L. M. Global correlates of extinction risk in freshwater crayfish. Animal Conservation 20, 532–542, https://doi.org/10.1111/acv.12350 (2017).
Google Scholar
Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci Data 7, 171, https://doi.org/10.1038/s41597-020-0513-8 (2020).
Google Scholar
Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers Data J 7, e38492, https://doi.org/10.3897/BDJ.7.e38492 (2019).
Google Scholar
MacNeil, R. R. & Brcic, J. Coping with the subterranean environment: a thematic content analysis of the narratives of cave explorers. J Hum Perform Environ 13, Article 6, https://doi.org/10.7771/2327-2937.1089 (2017).
Google Scholar
Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers Conserv 19, 3035–3048, https://doi.org/10.1007/s10531-010-9873-2 (2010).
Google Scholar
Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecology and Evolution, https://doi.org/10.1002/ece3.7556 (2021).
Brown, A. W., Kaiser, K. A. & Allison, D. B. Issues with data and analyses: errors, underlying themes, and potential solutions. Proc Natl Acad Sci USA 115, 2563–2570, https://doi.org/10.1073/pnas.1708279115 (2018).
Google Scholar
Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildlife Research 39, 266–270, https://doi.org/10.1071/WR11103 (2012).
Google Scholar
Lunghi, E. & Veith, M. Are Visual Implant Alpha tags adequate for individually marking European cave salamanders (genus Hydromantes)? Salamandra 53, 541–544 (2017).
Swanson, J. E., Bailey, L. L., Muths, E. & Funk, W. C. Factors influencing survival and mark retention in postmetamorphic Boreal chorus frogs. Copeia 2013, 670–675, https://doi.org/10.1643/CH-12-129 (2013).
Google Scholar
Sacchi, R. et al. Photographic identification in reptiles: a matter of scales. Amphibia-Reptilia 31, 489–502 (2010).
Google Scholar
Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253, https://doi.org/10.3897/herpetozoa.32.e39030 (2019).
Google Scholar
Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 13, e0205672, https://doi.org/10.1371/journal.pone.0205672 (2018).
Google Scholar
Lunghi, E. et al. The post hoc measurement as a safe and reliable method to age and size plethodontid salamanders. Ecology and Evolution 10, 11111–11116, https://doi.org/10.1002/ece3.6748 (2020).
Google Scholar
Hedrick, B. P. et al. Digitization and the future of natural history collections. BioScience 70, 243–251, https://doi.org/10.1093/biosci/biz163 (2020).
Google Scholar
Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philosophical Transactions of the Royal Society B 374, 20170391, https://doi.org/10.1098/rstb.2017.0391 (2019).
Google Scholar
Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: do environmental factors have a role? Ecology 101, e03088, https://doi.org/10.1002/ecy.3088 (2020).
Google Scholar
Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol 43, 42–50 (2012).
Google Scholar
Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16, https://doi.org/10.1007/s00442-014-3201-6 (2015).
Google Scholar
Lunghi, E. et al. Same diet, different strategies: variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180, https://doi.org/10.3390/d12050180 (2020).
Google Scholar
Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol 55, 29–35, https://doi.org/10.1016/j.actao.2013.11.003 (2014).
Google Scholar
Lunghi, E. et al. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers Data J 8, e48623, https://doi.org/10.3897/BDJ.8.e48623 (2020).
Google Scholar
Carvalho-Rocha, V., Cortês, L. B. & Neckel-Oliveira, S. Interindividual patterns of resource use in three subtropical Atlantic Forest frogs. Austral Ecology 43, 150–158, https://doi.org/10.1111/aec.12552 (2018).
Google Scholar
Lunghi, E. et al. Photos and stomach contents of two mainland Italian Speleomantes salamanders: data from summer 2020. figshare https://doi.org/10.6084/m9.figshare.c.5398368 (2021).
Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA 110, 15325–15329, https://doi.org/10.1073/pnas.1307356110 (2012).
Google Scholar
Treilibs, C. E., Pavey, C. R., Hutchinson, M. N. & Bull, C. M. Photographic identification of individuals of a free-ranging, small terrestrial vertebrate. Ecology and Evolution 6, 800–809, https://doi.org/10.1002/ece3.1883 (2016).
Google Scholar
Town, C., Marshall, A. & Sethasathien, N. Manta Matcher: automated photographic identification of manta rays using keypoint features. Ecology and Evolution 3, 1902–1914, https://doi.org/10.1002/ece3.587 (2013).
Google Scholar
MacCoun, R. & Perlmutter, S. Hide results to seek the truth. Nature 526, 187–189, https://doi.org/10.1038/526187a (2015).
Google Scholar
Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J Therm Biol 60, 79–85, https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).
Google Scholar
Weller, H. I. & Westneat, M. W. Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ 7, e6398, https://doi.org/10.7717/peerj.6398 (2019).
Google Scholar
Adams, D., Collyer, M. & Kaliontzopoulou, A. geomorph. Geometric Morphometric Analyses of 2D/3D Landmark Data. R package version 3.2.1, https://github.com/geomorphR/geomorph (2020).
Bendik, N. F., Morrison, T. A., Gluesenkamp, A. G., Sanders, M. S. & O’Donnell, L. J. Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae. PLoS ONE 8, e59424, https://doi.org/10.1371/journal.pone.0059424 (2013).
Google Scholar
Renet, J., Leprêtre, L., Champagnon, J. & Lambret, P. Monitoring amphibian species with complex chromatophore patterns: a non-invasive approach with an evaluation of software effectiveness and reliability. Herpetological Journal 29, 13–22, https://doi.org/10.33256/hj29.1.1322 (2019).
Google Scholar
Allen-Blevins, C. R., You, X., Hinde, K. & Sela, D. A. Handling stress may confound murine gut microbiota studies. PeerJ 5, e2876, https://doi.org/10.7717/peerj.2876 (2017).
Google Scholar
Samimi, A. S., Tajik, J., Jarakani, S. & Shojaeepour, S. Evaluation of a five-minute resting period following handling stress on electrocardiogram parameters and cardiac rhythm in sheep. Veterinary Science Development 6, 6481, https://doi.org/10.4081/vsd.2016.6481 (2016).
Google Scholar
Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630, https://doi.org/10.1126/science.1258268 (2014).
Google Scholar
Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat Ecol Evol 3, 319, https://doi.org/10.1038/s41559-019-0803-8 (2019).
Google Scholar
Source: Ecology - nature.com