Potter, J. R. et al. Visual and passive acoustic marine mammal observations and high-frequency seismic source characteristics recorded during a seismic survey. IEEE J. Ocean. Eng. 32, 469–483 (2007).
Google Scholar
Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).
Google Scholar
Richardson, W., Greene, J., Malme, C. & Thomson, D. Marine Mammals and Noise (Academic Press, 1995).
André, M. The sperm whale sonar: monitoring and use in mitigation of anthropogenic noise effects in the marine environment nuclear instruments and methods in physics research section a accelerators spectrometers detectors and associated equipment. NIM. Phys. Res. A 602, 262–267 (2009).
Google Scholar
Lucke, K., Siebert, U., Lepper, P. A. & Blanchet, M.-A. Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. J. Acoust. Soc. Am. 125, 4060–4070 (2009).
Google Scholar
Slabbekoorn, H. et al. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).
Google Scholar
McCauley, R. D. et al. Widely used marine seismic survey air gun operations negatively impact zooplankton. Nat. Ecol. Evol. 1, 1–8 (2017).
Google Scholar
Day, R. D., McCauley, R. D., Fitzgibbon, Q. P., Hartmann, K. & Semmens, J. M. Assessing the impact of marine seismic surveys on Southeast Australian Scallop and Lobster Fisheries https://frdc.com.au/Archived-Reports/FRDC%20Projects/2012-008-DLD.PDF (2016).
Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. Biol. Sci. 283, 20160839 (2016).
Williams, R. et al. Impacts of anthropogenic noise on marine life: publication patterns, new discoveries, and future directions in research and management.Ocean Coast. Manag. 115, 17–24 (2015).
Google Scholar
Solé, M. et al. Evidence of cnidarians sensitivity to sound after exposure to low frequency noise underwater sources. Sci. Rep. 6, 37979 (2016).
Solé, M. et al. Offshore exposure experiments on cuttlefish indicate received sound pressure and particle motion levels associated with acoustic trauma. Sci. Rep. 7, 45899 (2017).
Solé, M., Monge, M., André, M. & Quero, C. A proteomic analysis of the statocyst endolymph in common cuttlefish (Sepia officinalis): an assessment of acoustic trauma after exposure to sound. Sci. Rep. 9, 9340 (2019).
Boudouresque, C. F., Mayot, N. & Pergen, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
den Hartog, C. The Sea‐grasses of the World (North Holland Publishing Co., 1970).
Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016).
Google Scholar
Hemminga, M. & Duarte, C. Seagrass Ecology (Cambridge University Press, 2000).
Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733 (2017).
Google Scholar
Celdran, D. & Marin, A. Seed photosynthesis enhances Posidonia oceanica seedling growth seed collection. Ecosphere 4, 1–11 (2013).
Google Scholar
Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Chang. 2, 821–824 (2012).
Google Scholar
Boudouresque, C. F., Bernard, G., Pergent, G., Shili, A. & Verlaque, M. Regression of mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot. Mar. 52, 395–418 (2009).
Google Scholar
Verduin, J. J., Paling, E. I., Van Keulen, M. & Rivers, L. E. Recovery of donor meadows of Posidonia sinuosa and Posidonia australis contributes to sustainable seagrass transplantation. Int. J. Ecol. https://doi.org/10.1155/2012/837317 (2012).
Gagliano, M., Mancuso, S. & Robert, D. Towards understanding plant bioacoustics. Trends Plant Sci. 17, 323–325 (2012).
Google Scholar
Hashiguchi, Y., Tasaka, M. & Morita, M. T. Mechanism of higher plant gravity sensing. Am. J. Bot. 100, 91–100 (2013).
Google Scholar
Pozueta-romero, J. Comparative analysis of mitochondrial translocators. FEBS 287, 62–66 (1991).
Google Scholar
Yoder, T., Zheng, H., Todd, P. & Al, E. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Phy. 125, 1045–1060 (2001).
Google Scholar
Kuo, J. Morphology, anatomy and histochemistry of the australian seagrasses of the genus Posidonia könig (posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis hook F. Aquat. Bot. 5, 171–190 (1978).
Google Scholar
Solé, M., Lenoir, M., Fortuño, J.-M., Van Der Schaar, M. & André, M. A critical period of susceptibility to sound in the sensory cells of cephalopod hatchlings. Biol. Open 7, 033860 (2018).
Solé, M. et al. Does exposure to noise from human activities compromise sensory information from cephalopod statocysts? Deep. Res. Part II Top. Stud. Oceanogr. 95, 160–181 (2013).
Slepecky, N., Hamernik, R., Henderson, D. & Al, E. Correlation of audiometric data with changes in cochlear hair cell sterocilia resulting from impulse noise trauma. Acta Otolaryngol. 93, 329–340 (1982).
Google Scholar
Avinash, G. B., Nuttall, A.-L. & Raphael, Y. 3-D analysis of F-actin in stereocilia of cochlear hair cells after loud noise exposure. Hear Res. 67, 139–146 (1993).
Google Scholar
Tilney, L. G., Saunders, J. C., Egelman, E. & DeRosier, D. J. Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae. Hear Res. 7, 181–197 (1982).
Google Scholar
Han, Y., Wang, X., Chen, J. & Sha, S. H. Noise-induced cochlear F-actin depolymerization is 560 mediated via ROCK2/p-ERM signaling. J. Neurochem. 133, 617–628 (2015).
Google Scholar
Wang, J., Dib, M., Lenoir, M. & Al, E. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig. Neuroscience 111, 635–648 (2002).
Google Scholar
Vicente-Torres, M. A. & Schacht, J. A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J. Neurosci. Res. 83, 1564–1572 (2006).
Google Scholar
Gonzalez-Gonzalez, S. The role of mitochondrial oxidative stress in hearing loss.Neurol. Disord. Ther. 1, 1–5 (2017).
Mishra, R. C., Ghosh, R. & Bae, H. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J. Exp. Bot. 6715, 4483–4494 (2016).
Google Scholar
van Wijk, K. J. & Kessler, F. Plastoglobuli: Plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu. Rev. Plant Biol. 68, 253–289 (2017).
Vohník, M., Borovec, O., Župan, I. & Al, E. Anatomically and morphologically unique dark septate endophytic association in the roots of the mediterranean endemic seagrass Posidonia oceanica. Mycorrhiza 25, 663–672 (2015).
Google Scholar
Genre, P. & Bonfante, A. Mechanisms underlying benefi cial plant – fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 (2010).
Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. (Academic Press, Elsevier Ltd., 2008).
Vohník, M., Borovec, O., Kolaříková, Z., Sudová, R. & Réblová, M. Extensive sampling and high-throughput sequencing reveal posidoniomyces atricolor gen. et sp. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica. MycoKeys 55, 59–86 (2019).
Google Scholar
Pijanowski, B. C. et al. Soundscape ecology: the science of sound in the landscape. Bioscience 61, 203–216 (2011).
Google Scholar
Lindseth, A. V. & Lobel, P. S. Underwater soundscape monitoring and fish bioacoustics: a review. Fishes 3, 36 (2018).
McWilliam, J. N. & Hawkins, A. D. A comparison of inshore marine soundscapes. J. Exp. Mar. Biol. Ecol. 446, 166–176 (2013).
Google Scholar
Farina, A. Soundscape Ecology (Springer, 2014).
Buscaino, G. et al. Temporal patterns in the soundscape of the shallow waters of a mediterranean marine protected area. Sci. Rep. 6, 1–13 (2016).
Google Scholar
Solé, M. et al. Ultrastructural damage of Loligo vulgaris and Illex coindetiistatocysts after low frequency sound exposure. PLoS One 8, 1–12 (2013).
André, M. et al. Low-frequency sounds induce acoustic trauma in cephalopods. Front. Ecol. Environ. 9, 489–493 (2011).
André, M. et al. Contribution to the understanding of particle motion perception in marine invertebrates. Adv. Exp. Med. Biol. 875, 47–55 (2016).
Source: Ecology - nature.com