in

The role of plant labile carbohydrates and nitrogen on wheat-aphid relations 

  • 1.

    Yamauchi, A., Ikegawa, Y., Ohgushi, T. & Namba, T. Density regulation of co-occurring herbivores via two indirect effects mediated by biomass and non-specific induced plant defenses. Thyroid Res. https://doi.org/10.1007/s12080-020-00479-2 (2020).

    Article 

    Google Scholar 

  • 2.

    Wootton, J. T. Indirect effects in complex ecosystems: recent progress and future challenges. J. Sea Res. 48, 157–172. https://doi.org/10.1016/S1385-1101(02)00149-1 (2002).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Ann. Rev. Ecol. Syst. 25, 443–466. https://doi.org/10.1146/annurev.es.25.110194.002303 (1994).

    Article 

    Google Scholar 

  • 4.

    Comeault, A. A. & Matute, D. R. Temperature-dependent competitive outcomes between the fruit flies Drosophila santomea and Drosophila yakuba. Am. Nat. 197, 312–323. https://doi.org/10.1086/712781 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (Murray, 1859).

    Google Scholar 

  • 6.

    Kankaanpää, T. et al. Parasitoids indicate major climate-induced shifts in arctic communities. Global Chang. Biol. https://doi.org/10.1111/gcb.15297 (2020).

    Article 

    Google Scholar 

  • 7.

    Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Ullah, H. & Connell, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369, 829–832. https://doi.org/10.1126/science.aax0621 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Kaur, T. & Dutta, P. S. Persistence and stability of interacting species in response to climate warming: the role of trophic structure. Thyroid Res. https://doi.org/10.1007/s12080-020-00456-9 (2020).

    Article 

    Google Scholar 

  • 9.

    Han, P. et al. Global change-driven modulation of bottom–up forces and cascading effects on biocontrol services. Curr. Opin. Insect Sci. 35, 27–33. https://doi.org/10.1016/j.cois.2019.05.005 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 10.

    Waring, G. L. & Cobb, N. S. in Insect-Plant Interactions, Vol. 4 (ed. Bernays, E. A.) 167–226 (CRC Press, 1992).

  • 11.

    Zavala, J. A., Gog, L. & Giacometti, R. Anthropogenic increase in carbon dioxide modifies plant-insect interactions. Ann. Appl. Biol. https://doi.org/10.1111/aab.12319 (2016).

    Article 

    Google Scholar 

  • 12.

    Bezemer, T. M. & Jones, T. H. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82, 212. https://doi.org/10.2307/3546961 (1998).

    Article 

    Google Scholar 

  • 13.

    Navarro, E. C., Lam, S. K. & Trebicki, P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.605337 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Moreno-Delafuente, A., Viñuela, E., Fereres, A., Medina, P. & Trębicki, P. Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects 11, 459. https://doi.org/10.3390/insects11080459 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Shiferaw, B. et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 5, 291–317. https://doi.org/10.1007/s12571-013-0263-y (2013).

    Article 

    Google Scholar 

  • 16.

    Minks, A. K. & Harrewijn, P. Aphids. Their Biology, Natural Enemies and Control Vol. A (Elsevier, 1987).

    Google Scholar 

  • 17.

    Trebicki, P., Dader, B., Vassiliadis, S. & Fereres, A. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture. Insect Sci. 24, 975–989. https://doi.org/10.1111/1744-7917.12531 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Aradottir, G. I. & Crespo-Herrera, L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: a review. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2021.01.002 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Yin, W. et al. Microhabitat separation between the pest aphids Rhopalosiphum padi and Sitobion avenae: food resource or microclimate selection?. J. Pest. Sci. https://doi.org/10.1007/s10340-020-01298-4 (2020).

    Article 

    Google Scholar 

  • 20.

    Noble, D. in Perspectives on Organisms. Biological Time, Symmetries and Singularities Lecture Notes in Morphogenesis (eds. Longo, G. & Montévil, M.) VII–X (Springer, 2014).

  • 21.

    Sadras, V. O. Effective phenotyping applications require matching trait and platform and more attention to theory. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01339 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).

    Book 

    Google Scholar 

  • 23.

    Sadras, V. O. et al. Aphid resistance: an overlooked ecological dimension of nonstructural carbohydrates in cereals. Front. Plant Sci. 11, 937. https://doi.org/10.3389/fpls.2020.00937 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Bogaert, F. et al. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis. Pest Manag. Sci. 73, 1648–1654. https://doi.org/10.1002/ps.4505 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Radin, J. W. Control of plant growth by nitrogen: differences between cereals and broadleaf species. Plant Cell Environ. 6, 65–68 (1983).

    Google Scholar 

  • 26.

    Fereres, A., Lister, R. M., Araya, J. E. & Foster, J. E. Development and reproduction of the English grain aphid (Homoptera, Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environ. Entomol. 18, 388–393. https://doi.org/10.1093/ee/18.3.388 (1989).

    Article 

    Google Scholar 

  • 27.

    Pompon, J., Quiring, D., Goyer, C., Giordanengo, P. & Pelletier, Y. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. J. Insect Physiol. 57, 1317–1322. https://doi.org/10.1016/j.jinsphys.2011.06.007 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Tjallingii, W. F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730. https://doi.org/10.1111/j.1570-7458.1978.tb02836.x (1978).

    Article 

    Google Scholar 

  • 29.

    Mattson, W. J. Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst. 11, 119–161. https://doi.org/10.1146/annurev.es.11.110180.001003 (1980).

    Article 

    Google Scholar 

  • 30.

    White, T. C. R. The Inadequate Environment—Nitrogen and the Abundance of Animals (Springer Verlag, 1993).

    Google Scholar 

  • 31.

    Aqueel, M. A. & Leather, S. R. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Prot. 30, 216–221. https://doi.org/10.1016/j.cropro.2010.09.013 (2011).

    Article 

    Google Scholar 

  • 32.

    Sadras, V. O. & Lemaire, G. Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crops Res. 164, 54–64 (2014).

    Article 

    Google Scholar 

  • 33.

    Gastal, F., Lemaire, G., Durand, J. L. & Louarn, G. in Crop Physiology: Applications for Genetic Improvement and Agronomy (eds. Sadras, V. O. & Calderini, D. F.) 161–206 (Academic Press, 2015).

  • 34.

    Lemaire, G. & Millard, P. An ecophysiological approach to modelling resource fluxes in competing plants. J. Exp. Bot. 50, 15–28. https://doi.org/10.1093/jexbot/50.330.15 (1999).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x (2004).

    Article 

    Google Scholar 

  • 36.

    Sun, Y. C., Chen, F. J. & Ge, F. Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum. Environ. Entomol. 38, 26–34. https://doi.org/10.1603/022.038.0105 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Oehme, V., Högy, P., Zebitz, C. P. W. & Fangmeier, A. Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. J. Plant Interact. 8, 74–84. https://doi.org/10.1080/17429145.2012.736200 (2013).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Oehme, V., Hogy, P., Franzaring, J., Zebitz, C. P. W. & Fangmeier, A. Response of spring crops and associated aphids to elevated atmospheric CO2 concentrations. J. Appl. Bot. Food Qual. 84, 151–157 (2011).

    CAS 

    Google Scholar 

  • 39.

    Dáder, B., Fereres, A., Moreno, A. & Trębicki, P. Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Sci. Rep. 6, 19120. https://doi.org/10.1038/srep19120 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Olin, S. et al. Modelling the response of yields and tissue C:N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe. Biogeosciences 12, 2489–2515. https://doi.org/10.5194/bg-12-2489-2015 (2015).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Justes, E., Mary, B., Meynard, J. M., Machet, J. M. & Thelierhuche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 74, 397–407 (1994).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Evans, J. R. & Clarke, V. C. The nitrogen cost of photosynthesis. J. Exp. Bot. 70, 7–15. https://doi.org/10.1093/jxb/ery366 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Mittler, T. E., Dadd, R. H. & Daniels, S. C. Utilization of different sugars by aphid Myzus persicae. J. Insect Physiol. 16, 1873–2000. https://doi.org/10.1016/0022-1910(70)90234-9 (1970).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Douglas, A. E. et al. Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid, Acyrthosiphon pisum. J. Exp. Biol. 209, 1395–1403. https://doi.org/10.1242/jeb.02148 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Bloom, A. J., Chapin, F. S. I. & Mooney, H. A. Resource limitation in plants—an economic analogy. Ann. Rev. Ecol. Syst. 16, 363–392 (1985).

    Article 

    Google Scholar 

  • 46.

    Chapin, F. S. I., Schulze, E. D. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21, 423–447 (1990).

    Article 

    Google Scholar 

  • 47.

    Ovenden, B. et al. Selection for water-soluble carbohydrate accumulation and investigation of genetic x environment interactions in an elite wheat breeding population. Theor. Appl. Gen. 130, 2445–2461. https://doi.org/10.1007/s00122-017-2969-2 (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    del Pozo, A. et al. Physiological traits associated with wheat yield potential and performance under water-stress in a Mediterranean environment. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.00987 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Dixon, A. F. G. in Aphids Their Biology, Natural Enemies and Control, Vol. A (eds. Minks, A. K. & Harrewijn, P.) (Elsevier, 1987).

  • 50.

    Brabec, M., Honek, A., Pekar, S. & Martinkova, Z. Population dynamics of aphids on cereals: digging in the time-series data to reveal population regulation caused by temperature. PLoS ONE https://doi.org/10.1371/journal.pone.0106228 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Cid, M., Ávila, A., García, A., Abad, J. & Fereres, A. New sources of resistance to lettuce aphids in Lactuca spp. Arthropod.-Plant Interact. 6, 655–669. https://doi.org/10.1007/s11829-012-9213-4 (2012).

    Article 

    Google Scholar 

  • 52.

    Collado-Gonzalez, J. et al. Effects of water deficit during maturation on amino acids and jujube fruit eating quality. Maced. J. Chem. Chem. Eng. 33, 103–117. https://doi.org/10.20450/mjcce.2014.375 (2014).

    Article 

    Google Scholar 

  • 53.

    Riga, P. et al. Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants. Food Chem. 272, 227–234. https://doi.org/10.1016/j.foodchem.2018.08.051 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Nagumo, Y. et al. Rapid quantification of cyanamide by ultra-high-pressure liquid chromatography in fertilizer, soil or plant samples. J. Chromatogr. A 1216, 5614–5618. https://doi.org/10.1016/j.chroma.2009.05.067 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Cerrillo, I. et al. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice. Plant Foods Hum. Nutr. 70, 153–159. https://doi.org/10.1007/s11130-015-0472-y (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Salazar, C., Armenta, J. M., Cortés, D. F. & Shulaev, V. Combination of an AccQ·Tag-ultra performance liquid chromatographic method with tandem mass spectrometry for the analysis of amino acids. Methods Mol. Biol. (Clifton N. J.) 828, 13–28. https://doi.org/10.1007/978-1-61779-445-2_2 (2012).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Nadezdha, P. T., Pascal, B. A., Annick, M. & Panteley, D. P. HPLC analysis of mono- and disaccharides in food products. In Scientific Works Volume LX, 765–791 (Food Science, Engineering and Technology, 2013).

  • 58.

    Greenland, S. Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution with s-values. Am. Stat. 73, 106–114. https://doi.org/10.1080/00031305.2018.1529625 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • 59.

    Sarria, E., Cid, M., Garzo, E. & Fereres, A. Excel workbook for automatic parameter calculation of EPG data. Comput. Electron. Agric. 67, 35–42. https://doi.org/10.1016/j.compag.2009.02.006 (2009).

    Article 

    Google Scholar 

  • 60.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).

    Book 

    Google Scholar 

  • 61.

    Garzo, E., Rizzo, E., Fereres, A. & Gomez, S. K. High levels of arbuscular mycorrhizal fungus colonization on Medicago truncatula reduces plant suitability as a host for pea aphids (Acyrthosiphon pisum). Insect Sci. 27, 99–112. https://doi.org/10.1111/1744-7917.12631 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Potvin, C., Lechowicz, M. J. & Tardif, S. The statistical analysis of ecological response curves obtained from experiments involving repeated measures. Ecology 71, 1389–1400 (1990).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Why the Earth needs a course correction now

    Diving into the global problem of technology waste