Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155 (1965).
Google Scholar
Weiss, L. C. & Tollrian, R. Predator induced defenses in Crustacea. in The Natural History of Crustacea: Life Histories, Volume 5 (eds. Welborn, G. & Thiel, M.) 303–321 (Oxford University Press, 2018).
Tollrian, R. Predator-induced helmet formation in Daphnia cucullata (Sars). Arch. für Hydrobiol. 119, 191–196 (1990).
Krueger, D. A. & Dodson, S. I. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0219 (1981).
Google Scholar
Grant, J. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0201 (1981).
Google Scholar
Macháček, J. Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia https://doi.org/10.1007/BF00028397 (1991).
Google Scholar
Stibor, H. & Luning, J. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct. Ecol. https://doi.org/10.2307/2390117 (1994).
Google Scholar
Dodson, S. I., Tollrian, R. & Lampert, W. Daphnia swimming behaviour during vertical migration. J. Plankton Res. 19, 969–978 (1997).
Google Scholar
Tollrian, R., Duggen, S., Weiss, L. C., Laforsch, C. & Kopp, M. Density-dependent adjustment of inducible defenses. Sci. Rep. 5, 12736 (2015).
Google Scholar
Miyakawa, H. et al. Gene up-regulation in response to predator kairomones in the water flea Daphnia pulex. BMC Dev. Biol. https://doi.org/10.1186/1471-213X-10-45 (2010).
Google Scholar
Oda, S., Kato, Y., Watanabe, H., Tatarazako, N. & Iguchi, T. Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.378 (2011).
Google Scholar
Miyakawa, H., Sato, M., Colbourne, J. K. & Iguchi, T. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex. PLoS ONE 10, 1–12 (2015).
Google Scholar
Weiss, L. C., Kruppert, S., Laforsch, C. & Tollrian, R. Chaoborus and Gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals. PLoS ONE 7, e36879 (2012).
Google Scholar
Weiss, L. C., Leese, F., Laforsch, C. & Tollrian, R. Dopamine is a key regulator in the signalling pathway underlying predatorinduced defences in Daphnia. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.1440 (2015).
Google Scholar
Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).
Google Scholar
Bullock, T. & Horridge, G. A. Structure and function in the nervous systems of invertebrates. (San Francisco, 1965).
Fritsch, M., Kaji, T., Olesen, J. & Richter, S. The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda): insights into the evolution and homologies of branchiopod limbs and ‘frontal organs’. Zoomorphology 132, 163–181 (2013).
Google Scholar
Kolb, B. & Whishaw, I. Q. Brain plasticity and behavior. Annu. Rev. Psychol. https://doi.org/10.1146/annurev.psych.49.1.43 (1998).
Google Scholar
Turner, A. M. & Greenough, W. T. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. https://doi.org/10.1016/0006-8993(85)90525-6 (1985).
Google Scholar
Woodley, S. K., Mattes, B. M., Yates, E. K. & Relyea, R. A. Exposure to sublethal concentrations of a pesticide or predator cues induces changes in brain architecture in larval amphibians. Oecologia 179, 655–665 (2015).
Google Scholar
Gronenberg, W., Heeren, S. & Hölldobler, B. Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J. Exp. Biol. 199, 2011–2019 (1996).
Google Scholar
Barth, M. & Heisenberg, M. Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learn. Mem. https://doi.org/10.1101/lm.4.2.219 (1997).
Google Scholar
Barth, M., Hirsch, H. V. B., Meinertzhagen, I. A. & Heisenberg, M. Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J. Neurosci. https://doi.org/10.1523/jneurosci.17-04-01493.1997 (1997).
Google Scholar
van Dijk, L. J. A., Janz, N., Schäpers, A., Gamberale-Stille, G. & Carlsson, M. A. Experience-dependent mushroom body plasticity in butterflies: Consequences of search complexity and host range. Proc. R. Soc. B Biol. Sci. 284, 0–7 (2017).
Withers, G. S., Fahrbach, S. E. & Robinson, G. E. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature https://doi.org/10.1038/364238a0 (1993).
Google Scholar
Heisenberg, M., Heusipp, M. & Wanke, C. Structural plasticity in the Drosophila brain. J. Neurosci. https://doi.org/10.1523/jneurosci.15-03-01951.1995 (1995).
Google Scholar
Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. https://doi.org/10.1242/jeb.017574 (2008).
Google Scholar
Berlucchi, G. & Buchtel, H. A. Neuronal plasticity: historical roots and evolution of meaning. Exp. Brain Res. https://doi.org/10.1007/s00221-008-1611-6 (2009).
Google Scholar
Zhai, R. G. & Bellen, H. J. The architecture of the active zone in the presynaptic nerve terminal. Physiology https://doi.org/10.1152/physiol.00014.2004 (2004).
Google Scholar
Horn, G., Bradley, P. & McCabe, B. J. Changes in the structure of synapses associated with learning. J. Neurosci. https://doi.org/10.1523/jneurosci.05-12-03161.1985 (1985).
Google Scholar
Beaulieu, C. & Colonnier, M. Richness of environment affects the number of contacts formed by boutons containing flat vesicles but does not alter the number of these boutons per neuron. J. Comp. Neurol. https://doi.org/10.1002/cne.902740305 (1988).
Google Scholar
Anderson, B. J. Plasticity of gray matter volume: The cellular and synaptic plasticity that underlies volumetric change. Dev. Psychobiol. https://doi.org/10.1002/dev.20563 (2011).
Google Scholar
Tyagarajan, S. K. & Fritschy, J.-M. Gephyrin: a master regulator of neuronal function?. Nat. Rev. Neurosci. 15, 141–156 (2014).
Google Scholar
Dutertre, S., Becker, C. M. & Betz, H. Inhibitory glycine receptors: an update. J. Biol. Chem. https://doi.org/10.1074/jbc.R112.408229 (2012).
Google Scholar
Fritschy, J. M., Harvey, R. J. & Schwarz, G. Gephyrin: where do we stand, where do we go?. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.02.006 (2008).
Google Scholar
Choii, G. & Ko, J. Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med. https://doi.org/10.1038/emm.2015.5 (2015).
Google Scholar
Phillips-Portillo, J. & Strausfeld, N. J. Representation of the brain’s superior protocerebrum of the flesh fly, Neobellieria bullata, in the central body. J. Comp. Neurol. https://doi.org/10.1002/cne.23094 (2012).
Google Scholar
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).
Google Scholar
de Reuille, P. B. et al. MorphoGraphX: a platform for quantifying morphogenesis in 4D. Elife https://doi.org/10.7554/eLife.05864 (2015).
Google Scholar
Cignoni, P. et al. MeshLab: An open-source 3D mesh processing tool. In 6th Eurographics Italian Chapter Conference 2008 – Proceedings (2008).
Horstmann, M. et al. Scan, extract, wrap, compute—a 3D method to analyse morphological shape differences. PeerJ 2018, 1–20 (2018).
R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7 (2011).
Google Scholar
Wickham, H. et al. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. New York (2016).
Ohyama, T. et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520, 633–639 (2015).
Google Scholar
Simpson, J. H. Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. Advances in Genetics. https://doi.org/10.1016/S0065-2660(09)65003-3 (2009).
Google Scholar
Boyan, G., Williams, L. & Liu, Y. Conserved patterns of axogenesis in the panarthropod brain. Arthropod Struct. Dev. https://doi.org/10.1016/j.asd.2014.11.003 (2015).
Google Scholar
Cayre, M., Strambi, C. & Strambi, A. Neurogenesis in an adult insect brain and its hormonal control. Nature https://doi.org/10.1038/368057a0 (1994).
Google Scholar
Harzsch, S. & Dawirs, R. R. Neurogenesis in the developing crab brain: Postembryonic generation of neurons persists beyond metamorphosis. J. Neurobiol. https://doi.org/10.1002/(SICI)1097-4695(199603)29:3%3c384::AID-NEU9%3e3.0.CO;2-5 (1996).
Google Scholar
Sandeman, R., Clarke, D., Sandeman, D. & Manly, M. Growth-related and antennular amputation-induced changes in the olfactory centers of crayfish brain. J. Neurosci. https://doi.org/10.1523/jneurosci.18-16-06195.1998 (1998).
Google Scholar
Harzsch, S., Miller, J., Benton, J. & Beltz, B. From embryo to adult: Persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J. Neurosci. https://doi.org/10.1523/jneurosci.19-09-03472.1999 (1999).
Google Scholar
Letourneau, J. G. Addition of sensory structures and associated neurons to the crayfish telson during development. J. Comp. Physiol. A https://doi.org/10.1007/BF00656778 (1976).
Google Scholar
Sandeman, D. C. Organization of the central nervous system. in The Biology of Crustacea. Vol. 3. Neurobiology: Structure and Function 1–61 (Academic Press, 1982).
Laverack, M. S. The numbers of neurones in decapod Crustacea. J. Crustac. Biol. 8, 1–11 (1988).
Google Scholar
Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 240–250 (2001).
Google Scholar
Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature https://doi.org/10.1038/361031a0 (1993).
Google Scholar
Collingridge, G. L., Isaac, J. T. R. & Yu, T. W. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn1556 (2004).
Google Scholar
Atwood, H. L. & Wojtowicz, J. M. Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. Int. Rev. Neurobiol. 28, 275–362 (1986).
Google Scholar
Liu, G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat. Neurosci. https://doi.org/10.1038/nn1206 (2004).
Google Scholar
Hao, J., Wang, X. D., Dan, Y., Poo, M. M. & Zhang, X. H. An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.0912022106 (2009).
Google Scholar
Fu, A. K. & Ip, N. Y. Regulation of postsynaptic signaling in structural synaptic plasticity. Curr. Opin. Neurobiol. https://doi.org/10.1016/j.conb.2017.05.016 (2017).
Google Scholar
Chater, T. E. & Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2014.00401 (2014).
Google Scholar
Velazquez, J. L., Thompson, C. L., Barnes, E. M. & Angelides, K. J. Distribution and lateral mobility of GABA/benzodiazepine receptors on nerve cells. J. Neurosci. 9, 2163–2169 (1989).
Google Scholar
Gaiarsa, J. L., Caillard, O. & Ben-Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. https://doi.org/10.1016/S0166-2236(02)02269-5 (2002).
Google Scholar
Nusser, Z., Hájos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature https://doi.org/10.1038/25999 (1998).
Google Scholar
Source: Ecology - nature.com