in

Brain volume increase and neuronal plasticity underly predator-induced morphological defense expression in Daphnia longicephala

  • 1.

    Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155 (1965).

    Article 

    Google Scholar 

  • 2.

    Weiss, L. C. & Tollrian, R. Predator induced defenses in Crustacea. in The Natural History of Crustacea: Life Histories, Volume 5 (eds. Welborn, G. & Thiel, M.) 303–321 (Oxford University Press, 2018).

    Google Scholar 

  • 3.

    Tollrian, R. Predator-induced helmet formation in Daphnia cucullata (Sars). Arch. für Hydrobiol. 119, 191–196 (1990).

    Google Scholar 

  • 4.

    Krueger, D. A. & Dodson, S. I. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0219 (1981).

    Article 

    Google Scholar 

  • 5.

    Grant, J. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0201 (1981).

    Article 

    Google Scholar 

  • 6.

    Macháček, J. Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia https://doi.org/10.1007/BF00028397 (1991).

    Article 

    Google Scholar 

  • 7.

    Stibor, H. & Luning, J. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct. Ecol. https://doi.org/10.2307/2390117 (1994).

    Article 

    Google Scholar 

  • 8.

    Dodson, S. I., Tollrian, R. & Lampert, W. Daphnia swimming behaviour during vertical migration. J. Plankton Res. 19, 969–978 (1997).

    Article 

    Google Scholar 

  • 9.

    Tollrian, R., Duggen, S., Weiss, L. C., Laforsch, C. & Kopp, M. Density-dependent adjustment of inducible defenses. Sci. Rep. 5, 12736 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Miyakawa, H. et al. Gene up-regulation in response to predator kairomones in the water flea Daphnia pulex. BMC Dev. Biol. https://doi.org/10.1186/1471-213X-10-45 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Oda, S., Kato, Y., Watanabe, H., Tatarazako, N. & Iguchi, T. Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.378 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Miyakawa, H., Sato, M., Colbourne, J. K. & Iguchi, T. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex. PLoS ONE 10, 1–12 (2015).

    Article 

    Google Scholar 

  • 13.

    Weiss, L. C., Kruppert, S., Laforsch, C. & Tollrian, R. Chaoborus and Gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals. PLoS ONE 7, e36879 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Weiss, L. C., Leese, F., Laforsch, C. & Tollrian, R. Dopamine is a key regulator in the signalling pathway underlying predatorinduced defences in Daphnia. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.1440 (2015).

    Article 

    Google Scholar 

  • 15.

    Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).

    Article 

    Google Scholar 

  • 16.

    Bullock, T. & Horridge, G. A. Structure and function in the nervous systems of invertebrates. (San Francisco, 1965).

  • 17.

    Fritsch, M., Kaji, T., Olesen, J. & Richter, S. The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda): insights into the evolution and homologies of branchiopod limbs and ‘frontal organs’. Zoomorphology 132, 163–181 (2013).

    Article 

    Google Scholar 

  • 18.

    Kolb, B. & Whishaw, I. Q. Brain plasticity and behavior. Annu. Rev. Psychol. https://doi.org/10.1146/annurev.psych.49.1.43 (1998).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Turner, A. M. & Greenough, W. T. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. https://doi.org/10.1016/0006-8993(85)90525-6 (1985).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Woodley, S. K., Mattes, B. M., Yates, E. K. & Relyea, R. A. Exposure to sublethal concentrations of a pesticide or predator cues induces changes in brain architecture in larval amphibians. Oecologia 179, 655–665 (2015).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Gronenberg, W., Heeren, S. & Hölldobler, B. Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J. Exp. Biol. 199, 2011–2019 (1996).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Barth, M. & Heisenberg, M. Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learn. Mem. https://doi.org/10.1101/lm.4.2.219 (1997).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Barth, M., Hirsch, H. V. B., Meinertzhagen, I. A. & Heisenberg, M. Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J. Neurosci. https://doi.org/10.1523/jneurosci.17-04-01493.1997 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    van Dijk, L. J. A., Janz, N., Schäpers, A., Gamberale-Stille, G. & Carlsson, M. A. Experience-dependent mushroom body plasticity in butterflies: Consequences of search complexity and host range. Proc. R. Soc. B Biol. Sci. 284, 0–7 (2017).

    Google Scholar 

  • 25.

    Withers, G. S., Fahrbach, S. E. & Robinson, G. E. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature https://doi.org/10.1038/364238a0 (1993).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Heisenberg, M., Heusipp, M. & Wanke, C. Structural plasticity in the Drosophila brain. J. Neurosci. https://doi.org/10.1523/jneurosci.15-03-01951.1995 (1995).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. https://doi.org/10.1242/jeb.017574 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Berlucchi, G. & Buchtel, H. A. Neuronal plasticity: historical roots and evolution of meaning. Exp. Brain Res. https://doi.org/10.1007/s00221-008-1611-6 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Zhai, R. G. & Bellen, H. J. The architecture of the active zone in the presynaptic nerve terminal. Physiology https://doi.org/10.1152/physiol.00014.2004 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Horn, G., Bradley, P. & McCabe, B. J. Changes in the structure of synapses associated with learning. J. Neurosci. https://doi.org/10.1523/jneurosci.05-12-03161.1985 (1985).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Beaulieu, C. & Colonnier, M. Richness of environment affects the number of contacts formed by boutons containing flat vesicles but does not alter the number of these boutons per neuron. J. Comp. Neurol. https://doi.org/10.1002/cne.902740305 (1988).

    Article 
    PubMed 

    Google Scholar 

  • 32.

    Anderson, B. J. Plasticity of gray matter volume: The cellular and synaptic plasticity that underlies volumetric change. Dev. Psychobiol. https://doi.org/10.1002/dev.20563 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 33.

    Tyagarajan, S. K. & Fritschy, J.-M. Gephyrin: a master regulator of neuronal function?. Nat. Rev. Neurosci. 15, 141–156 (2014).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Dutertre, S., Becker, C. M. & Betz, H. Inhibitory glycine receptors: an update. J. Biol. Chem. https://doi.org/10.1074/jbc.R112.408229 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Fritschy, J. M., Harvey, R. J. & Schwarz, G. Gephyrin: where do we stand, where do we go?. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.02.006 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Choii, G. & Ko, J. Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med. https://doi.org/10.1038/emm.2015.5 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Phillips-Portillo, J. & Strausfeld, N. J. Representation of the brain’s superior protocerebrum of the flesh fly, Neobellieria bullata, in the central body. J. Comp. Neurol. https://doi.org/10.1002/cne.23094 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    de Reuille, P. B. et al. MorphoGraphX: a platform for quantifying morphogenesis in 4D. Elife https://doi.org/10.7554/eLife.05864 (2015).

    Article 

    Google Scholar 

  • 40.

    Cignoni, P. et al. MeshLab: An open-source 3D mesh processing tool. In 6th Eurographics Italian Chapter Conference 2008 – Proceedings (2008).

    Google Scholar 

  • 41.

    Horstmann, M. et al. Scan, extract, wrap, compute—a 3D method to analyse morphological shape differences. PeerJ 2018, 1–20 (2018).

    Google Scholar 

  • 42.

    R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7 (2011).

    Article 

    Google Scholar 

  • 43.

    Wickham, H. et al. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. New York (2016).

  • 44.

    Ohyama, T. et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520, 633–639 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Simpson, J. H. Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. Advances in Genetics. https://doi.org/10.1016/S0065-2660(09)65003-3 (2009).

    Article 

    Google Scholar 

  • 46.

    Boyan, G., Williams, L. & Liu, Y. Conserved patterns of axogenesis in the panarthropod brain. Arthropod Struct. Dev. https://doi.org/10.1016/j.asd.2014.11.003 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 47.

    Cayre, M., Strambi, C. & Strambi, A. Neurogenesis in an adult insect brain and its hormonal control. Nature https://doi.org/10.1038/368057a0 (1994).

    Article 

    Google Scholar 

  • 48.

    Harzsch, S. & Dawirs, R. R. Neurogenesis in the developing crab brain: Postembryonic generation of neurons persists beyond metamorphosis. J. Neurobiol. https://doi.org/10.1002/(SICI)1097-4695(199603)29:3%3c384::AID-NEU9%3e3.0.CO;2-5 (1996).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Sandeman, R., Clarke, D., Sandeman, D. & Manly, M. Growth-related and antennular amputation-induced changes in the olfactory centers of crayfish brain. J. Neurosci. https://doi.org/10.1523/jneurosci.18-16-06195.1998 (1998).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Harzsch, S., Miller, J., Benton, J. & Beltz, B. From embryo to adult: Persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J. Neurosci. https://doi.org/10.1523/jneurosci.19-09-03472.1999 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Letourneau, J. G. Addition of sensory structures and associated neurons to the crayfish telson during development. J. Comp. Physiol. A https://doi.org/10.1007/BF00656778 (1976).

    Article 

    Google Scholar 

  • 52.

    Sandeman, D. C. Organization of the central nervous system. in The Biology of Crustacea. Vol. 3. Neurobiology: Structure and Function 1–61 (Academic Press, 1982).

    Google Scholar 

  • 53.

    Laverack, M. S. The numbers of neurones in decapod Crustacea. J. Crustac. Biol. 8, 1–11 (1988).

    Article 

    Google Scholar 

  • 54.

    Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 240–250 (2001).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature https://doi.org/10.1038/361031a0 (1993).

    Article 
    PubMed 

    Google Scholar 

  • 56.

    Collingridge, G. L., Isaac, J. T. R. & Yu, T. W. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn1556 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 57.

    Atwood, H. L. & Wojtowicz, J. M. Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. Int. Rev. Neurobiol. 28, 275–362 (1986).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Liu, G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat. Neurosci. https://doi.org/10.1038/nn1206 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Hao, J., Wang, X. D., Dan, Y., Poo, M. M. & Zhang, X. H. An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.0912022106 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 60.

    Fu, A. K. & Ip, N. Y. Regulation of postsynaptic signaling in structural synaptic plasticity. Curr. Opin. Neurobiol. https://doi.org/10.1016/j.conb.2017.05.016 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Chater, T. E. & Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2014.00401 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Velazquez, J. L., Thompson, C. L., Barnes, E. M. & Angelides, K. J. Distribution and lateral mobility of GABA/benzodiazepine receptors on nerve cells. J. Neurosci. 9, 2163–2169 (1989).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Gaiarsa, J. L., Caillard, O. & Ben-Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. https://doi.org/10.1016/S0166-2236(02)02269-5 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 64.

    Nusser, Z., Hájos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature https://doi.org/10.1038/25999 (1998).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Why the Earth needs a course correction now

    Diving into the global problem of technology waste