Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).
Google Scholar
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
Google Scholar
Stem, C., Margoluis, R., Salafsky, N. & Brown, M. Monitoring and evaluation in conservation: a review of trends and approaches. Conserv. Biol. 19, 295–309 (2005).
Google Scholar
Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).
Google Scholar
Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol 2, e197 (2004).
Google Scholar
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
Google Scholar
Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252 (2016).
Google Scholar
Kissling, W. D. et al. Building essential biodiversity variables (EBV s) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).
Google Scholar
Nesshöver, C., Livoreil, B., Schindler, S. & Vandewalle, M. Challenges and solutions for networking knowledge holders and better informing decision-making on biodiversity and ecosystem services. Biodivers. Conserv. 25, 1207–1214 (2016).
Google Scholar
Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).
Google Scholar
Field, S. A., Tyre, A. J. & Possingham, H. P. Optimizing allocation of monitoring effort under economic and observational constraints. J. Wildl. Manag. 69, 473–482 (2005).
Google Scholar
Braunisch, V. & Suchant, R. Predicting species distributions based on incomplete survey data: The trade-off between precision and scale. Ecography 33, 826–840 (2010).
Google Scholar
Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
Google Scholar
Deiner, K. et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods Ecol. Evol. 8, 1888–1898 (2017).
Google Scholar
Deiner, K., Walser, J.-C., Mächler, E. & Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 183, 53–63 (2015).
Google Scholar
Tsuji, S., Takahara, T., Doi, H., Shibata, N. & Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. Environ. DNA 1, 99–108 (2019).
Google Scholar
Sales, N. G. et al. Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).
Google Scholar
Sales, N. G. et al. Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil. Mammal Rev. 50, 221–225 (2020).
Google Scholar
Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).
Google Scholar
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).
Google Scholar
Leempoel, K., Hebert, T. & Hadly, E. A. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proc. R. Soc. B Biol. Sci. 287, 20192353 (2020).
Google Scholar
Harper, L. R. et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 238, 108225 (2019).
Google Scholar
Rodgers, T. W. & Mock, K. E. Drinking water as a source of environmental DNA for the detection of terrestrial wildlife species. Conserv. Genet. Resour. 7, 693–696 (2015).
Google Scholar
Ushio, M. et al. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol. Ecol. Resour. 17, e63–e75 (2017).
Google Scholar
Williams, K. E., Huyvaert, K. P., Vercauteren, K. C., Davis, A. J. & Piaggio, A. J. Detection and persistence of environmental DNA from an invasive, terrestrial mammal. Ecol. Evol. 8, 688–695 (2018).
Google Scholar
Merkes, C. M., McCalla, S. G., Jensen, N. R., Gaikowski, M. P. & Amberg, J. J. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS ONE 9, e113346 (2014).
Google Scholar
Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 1–13 (2018).
Google Scholar
Zinger, L. et al. Advances and prospects of environmental DNA in neotropical rainforests. Adv. Ecol. Res. 62, 331–373 (2020).
Google Scholar
Withers, P. C., Cooper, C. E., Maloney, S. K., Bozinovic, F. & Cruz-Neto, A. P. Ecological and Environmental Physiology of Mammals Vol. 5 (Oxford University Press, 2016).
Google Scholar
Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).
Google Scholar
Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).
Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Tarboton, D. G., Bras, R. L. & Rodriguez-Iturbe, I. The fractal nature of river networks. Water Resour. Res. 24, 1317–1322 (1988).
Google Scholar
Ishige, T. et al. Tropical-forest mammals as detected by environmental DNA at natural saltlicks in Borneo. Biol. Conserv. 210, 281–285 (2017).
Google Scholar
Joseph, L. N., Field, S. A., Wilcox, C. & Possingham, H. P. Presence–absence versus abundance data for monitoring threatened species. Conserv. Biol. 20, 1679–1687 (2006).
Google Scholar
Lacy, R. C. Lessons from 30 years of population viability analysis of wildlife populations. Zoo Biol. 38, 67–77 (2019).
Google Scholar
Gärdenfors, U., Hilton-Taylor, C., Mace, G. M. & Rodríguez, J. P. The application of IUCN Red List criteria at regional levels. Conserv. Biol. 15, 1206–1212 (2001).
Google Scholar
Munro, R., Nielsen, S. E., Price, M., Stenhouse, G. & Boyce, M. S. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 87, 1112–1121 (2006).
Google Scholar
Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9, e88786 (2014).
Google Scholar
Hunter, M. E. et al. Detection limits of quantitative and digital PCR assays and their influence in presence–absence surveys of environmental DNA. Mol. Ecol. Resour. 17, 221–229 (2017).
Google Scholar
Roussel, J.-M., Paillisson, J.-M., Treguier, A. & Petit, E. The downside of eDNA as a survey tool in water bodies. J. Appl. Ecol. 52, 823–826 (2015).
Google Scholar
Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).
Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).
Google Scholar
Morris, W. F. et al. Quantitative Conservation Biology (Sinauer Sunderland, 2002).
Parks, B. C. South Chilcotin Mountains Park and Big Creek Park Management Plan (2019).
McLellan, M. L. et al. Divergent population trends following the cessation of legal grizzly bear hunting in southwestern British Columbia, Canada. Biol. Conserv. 233, 247–254 (2019).
Google Scholar
Kays, R. et al. Camera traps as sensor networks for monitoring animal communities. In 2009 IEEE 34th Conference on Local Computer Networks 811–818. https://doi.org/10.1109/LCN.2009.5355046 (IEEE, 2009).
Hendry, H. & Mann, C. Camelot–intuitive software for camera trap data management. BioRxiv 203216 (2017).
Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).
Google Scholar
Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For biodiversity research and monitoring (Oxford University Press, Oxford, 2018).
Google Scholar
Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
Google Scholar
De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).
Google Scholar
Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).
Google Scholar
Wearn, O. & Glover-Kapfer, P. Camera-trapping for conservation: A guide to best-practices. WWF Conserv. Technol. Ser. 1, 2019–2104 (2017).
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
Plummer, M., et al.. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing vol. 124, 1–10 (Vienna, Austria, 2003).
Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).
Google Scholar
Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos. Trans. R. Soc. B Biol. Sci. 366, 2703–2711 (2011).
Google Scholar
Samejima, H., Ong, R., Lagan, P. & Kitayama, K. Camera-trapping rates of mammals and birds in a Bornean tropical rainforest under sustainable forest management. For. Ecol. Manag. 270, 248–256 (2012).
Google Scholar
Parsons, A. W. et al. Do occupancy or detection rates from camera traps reflect deer density?. J. Mammal. 98, 1547–1557 (2017).
Google Scholar
Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution–Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).
Google Scholar
Villette, P., Krebs, C. J., Jung, T. S. & Boonstra, R. Can camera trapping provide accurate estimates of small mammal (Myodes rutilus and Peromyscus maniculatus) density in the boreal forest?. J. Mammal. 97, 32–40 (2016).
Google Scholar
Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. Wild Mammals of North America: Biology, Management, and Conservation (The Johns Hopkins University Press, 2003).
Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection Multimodel Inference 2nd edn, Vol. 2 (Springer, Berlin, 2002).
Google Scholar
Source: Ecology - nature.com