in

African forest elephant movements depend on time scale and individual behavior

  • 1.

    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 2478 (2015).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278 (2010).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 4.

    Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).

    Article 

    Google Scholar 

  • 5.

    Earl, J. E. & Zollner, P. A. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling. J. Anim. Ecol. 86, 987–997 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Bastille-Rousseau, G. & Wittemyer, G. Unveiling multidimensional heterogeneity in resource selection and movement tactics of animal. Ecol. Lett. https://doi.org/10.1111/ele.13327 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Hertel, A. G. et al. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).

    Article 

    Google Scholar 

  • 8.

    Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).

    Article 

    Google Scholar 

  • 9.

    Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Wolf, M. & Weissing, F. J. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Swan, G. J. F., Redpath, S. M., Bearhop, S. & McDonald, R. A. Ecology of problem individuals and the efficacy of selective wildlife management. Trends Ecol. Evol. 32, 518–530 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies?. Biol. Conserv. 209, 34–44 (2017).

    Article 

    Google Scholar 

  • 14.

    Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 1–18 (2020).

    Article 

    Google Scholar 

  • 15.

    Poulsen, J. R. et al. Ecological consequences of forest elephant declines for Afrotropical forests. Conserv. Biol. 32, 559–567 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Poulsen, J. R. et al. Poaching empties critical Central African wilderness of forest elephants. Curr. Biol. 27, R134–R135 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Maisels, F. et al. Devastating decline of forest elephants in Central Africa. PLoS ONE 8, e59469 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 18.

    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 4, 1–13 (2016).

    Google Scholar 

  • 19.

    Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E. & Spiegel, O. Trends and missing parts in the study of movement ecology. Proc. Natl. Acad. Sci. 105, 19060–19065 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 20.

    Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 948–958 (2012).

    Article 

    Google Scholar 

  • 22.

    Oliver, I., Beattie, A. J. & York, A. Spatial fidelity of plant, vertebrate, and invertebrate assemblages in multiple-use forest in Eastern Australia. Conserv. Biol. 12, 822–835 (1998).

    Article 

    Google Scholar 

  • 23.

    van Beest, F. M., Vander Wal, E., Stronen, A. V., Paquet, P. C. & Brook, R. K. Temporal variation in site fidelity: Scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore. Oecologia 52, 409–420 (2002).

    Google Scholar 

  • 24.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article 

    Google Scholar 

  • 25.

    Ihwagi, F. W. et al. Night-day speed ratio of elephants as indicator of poaching levels. Ecol. Indic. 84, 38–44 (2018).

    Article 

    Google Scholar 

  • 26.

    Wrege, P. H., Rowland, E. D., Thompson, B. G. & Batruch, N. Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration. Conserv. Biol. 24, 1578–1585 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).

    Article 

    Google Scholar 

  • 28.

    Vanleeuwe, H., Gautier-Hion, A. & Cajani, S. Forest clearings and the conservation of elephants (Loxodonta africana cyclotis) in North East Congo Republic. Pachyderm 24, 46–52 (1997).

    Google Scholar 

  • 29.

    Mcclintock, B. T., Fisheries, A. & Michelot, T. momentuHMM: R package for generalized hidden Markov models of animal movement. Methods Ecol. Evol. 2018, 1518–1530 (2017).

    Google Scholar 

  • 30.

    Vogel, S. M. et al. Exploring movement decisions: Can Bayesian movement-state models explain crop consumption behaviour in elephants (Loxodonta africana)?. J. Anim. Ecol. 89, 1055–1068 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 32.

    Van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Lindstedt, S. L. Home range, time, and body size in mammals. Ecology 67, 413–418 (1986).

    Article 

    Google Scholar 

  • 34.

    Mills, E. C. et al. Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon. PLoS One 13, e0199387 (2018).

  • 35.

    Bohrer, G., Beck, P. S. S. A., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 2 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Kolowski, J. M. et al. Movements of four forest elephants in an oil concession in Gabon, Central Africa. Afr. J. Ecol. 48, 1134–1138 (2010).

    Article 

    Google Scholar 

  • 37.

    Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20, 1251–1261 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Buij, R. et al. Patch-occupancy models indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribution in an industrial corridor in Gabon. Biol. Conserv. 135, 189–201 (2007).

    Article 

    Google Scholar 

  • 39.

    Blake, S. et al. Roadless wilderness area determines forest elephant movements in the Congo Basin. PLoS ONE 3, e3546 (2008).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 40.

    Torney, C. J., Grant, J., Morrison, T. A., Couzin, I. D. & Levin, S. A. From single steps to mass migration: The problem of scale in the movement ecology of the serengeti wildebeest. Philos. Trans. R. Soc. B Biol. Sci. 373, 2 (2018).

    Google Scholar 

  • 41.

    Roberts, C. P., Cain, J. W. & Cox, R. D. Identifying ecologically relevant scales of habitat selection: Diel habitat selection in elk: Diel. Ecosphere 8, 2 (2017).

    Article 

    Google Scholar 

  • 42.

    Sannier, C., McRoberts, R. E., Fichet, L. V. & Makaga, E. M. K. Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon. Remote Sens. Environ. 151, 138–148 (2014).

    Article 
    ADS 

    Google Scholar 

  • 43.

    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).

    Article 

    Google Scholar 

  • 44.

    Hoogenboom, I., Daan, S., Dallinga, J. H. & Schoenmakers, M. Seasonal change in the daily timing of behaviour of the common vole Microtus arvalis. Oecologia 61, 18–31. https://doi.org/10.1007/BF00379084(1984).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 45.

    Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state–space models. Proc. R. Soc. B Biol. Sci. 282, 2 (2015).

    Google Scholar 

  • 46.

    Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. 89, 57–67 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 47.

    WCS, W. C. S.- & University, C. for I. E. S. I. N.-C.-C. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). (2005).

  • 48.

    Hadfield, J. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • 49.

    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. (2019).

  • 50.

    Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models (Cambridge University Press, 2006).

    Book 

    Google Scholar 

  • 51.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article 

    Google Scholar 

  • 52.

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News https://doi.org/10.1016/s0306-4522(05)00880-8 (2006).

    Article 

    Google Scholar 

  • 53.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • 54.

    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Houslay, T. M., Vierbuchen, M., Grimmer, A. J., Young, A. J. & Wilson, A. J. Testing the stability of behavioural coping style across stress contexts in the Trinidadian guppy. Funct. Ecol. 32, 424–438 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13035 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 58.

    Yackulic, C. B., Strindberg, S., Maisels, F. & Blake, S. The spatial structure of hunter access determines the local abundance of forest elephants (Loxodonta africana cyclotis). Ecol. Appl. 21, 1296–1307 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Blake, S. et al. Fruit, minerals, and forest elephant trails: Do all roads lead to Rome?. Biotropica 36, 392 (2006).

    Google Scholar 

  • 60.

    Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).

    Article 
    ADS 

    Google Scholar 

  • 61.

    Beirne, C. et al. Climatic and resource determinants of forest elephant movements. Front. Ecol. Evol. 8, 1–14 (2020).

    Article 

    Google Scholar 

  • 62.

    Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).

    Article 

    Google Scholar 

  • 63.

    Bush, E. R. et al. Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ 2020, 1–29 (2020).

    Google Scholar 

  • 64.

    Bush, E. R. et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 7791, 7791 (2020).

    Google Scholar 

  • 65.

    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).

    Google Scholar 

  • 66.

    Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).

    Article 

    Google Scholar 

  • 67.

    McDougall, P. T., Réale, D., Sol, D. & Reader, S. M. Wildlife conservation and animal temperament: Causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim. Conserv. 9, 39–48 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Diving into the global problem of technology waste

    Imagining the distant past — and finding keys to the future