Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 2478 (2015).
Google Scholar
Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278 (2010).
Google Scholar
Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).
Google Scholar
Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).
Google Scholar
Earl, J. E. & Zollner, P. A. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling. J. Anim. Ecol. 86, 987–997 (2017).
Google Scholar
Bastille-Rousseau, G. & Wittemyer, G. Unveiling multidimensional heterogeneity in resource selection and movement tactics of animal. Ecol. Lett. https://doi.org/10.1111/ele.13327 (2019).
Google Scholar
Hertel, A. G. et al. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).
Google Scholar
Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).
Google Scholar
Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).
Google Scholar
Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).
Google Scholar
Wolf, M. & Weissing, F. J. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).
Google Scholar
Swan, G. J. F., Redpath, S. M., Bearhop, S. & McDonald, R. A. Ecology of problem individuals and the efficacy of selective wildlife management. Trends Ecol. Evol. 32, 518–530 (2017).
Google Scholar
Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies?. Biol. Conserv. 209, 34–44 (2017).
Google Scholar
Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 1–18 (2020).
Google Scholar
Poulsen, J. R. et al. Ecological consequences of forest elephant declines for Afrotropical forests. Conserv. Biol. 32, 559–567 (2018).
Google Scholar
Poulsen, J. R. et al. Poaching empties critical Central African wilderness of forest elephants. Curr. Biol. 27, R134–R135 (2017).
Google Scholar
Maisels, F. et al. Devastating decline of forest elephants in Central Africa. PLoS ONE 8, e59469 (2013).
Google Scholar
Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 4, 1–13 (2016).
Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E. & Spiegel, O. Trends and missing parts in the study of movement ecology. Proc. Natl. Acad. Sci. 105, 19060–19065 (2008).
Google Scholar
Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).
Google Scholar
Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 948–958 (2012).
Google Scholar
Oliver, I., Beattie, A. J. & York, A. Spatial fidelity of plant, vertebrate, and invertebrate assemblages in multiple-use forest in Eastern Australia. Conserv. Biol. 12, 822–835 (1998).
Google Scholar
van Beest, F. M., Vander Wal, E., Stronen, A. V., Paquet, P. C. & Brook, R. K. Temporal variation in site fidelity: Scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore. Oecologia 52, 409–420 (2002).
Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).
Google Scholar
Ihwagi, F. W. et al. Night-day speed ratio of elephants as indicator of poaching levels. Ecol. Indic. 84, 38–44 (2018).
Google Scholar
Wrege, P. H., Rowland, E. D., Thompson, B. G. & Batruch, N. Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration. Conserv. Biol. 24, 1578–1585 (2010).
Google Scholar
Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).
Google Scholar
Vanleeuwe, H., Gautier-Hion, A. & Cajani, S. Forest clearings and the conservation of elephants (Loxodonta africana cyclotis) in North East Congo Republic. Pachyderm 24, 46–52 (1997).
Mcclintock, B. T., Fisheries, A. & Michelot, T. momentuHMM: R package for generalized hidden Markov models of animal movement. Methods Ecol. Evol. 2018, 1518–1530 (2017).
Vogel, S. M. et al. Exploring movement decisions: Can Bayesian movement-state models explain crop consumption behaviour in elephants (Loxodonta africana)?. J. Anim. Ecol. 89, 1055–1068 (2020).
Google Scholar
Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).
Google Scholar
Van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).
Google Scholar
Lindstedt, S. L. Home range, time, and body size in mammals. Ecology 67, 413–418 (1986).
Google Scholar
Mills, E. C. et al. Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon. PLoS One 13, e0199387 (2018).
Bohrer, G., Beck, P. S. S. A., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 2 (2014).
Google Scholar
Kolowski, J. M. et al. Movements of four forest elephants in an oil concession in Gabon, Central Africa. Afr. J. Ecol. 48, 1134–1138 (2010).
Google Scholar
Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20, 1251–1261 (2006).
Google Scholar
Buij, R. et al. Patch-occupancy models indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribution in an industrial corridor in Gabon. Biol. Conserv. 135, 189–201 (2007).
Google Scholar
Blake, S. et al. Roadless wilderness area determines forest elephant movements in the Congo Basin. PLoS ONE 3, e3546 (2008).
Google Scholar
Torney, C. J., Grant, J., Morrison, T. A., Couzin, I. D. & Levin, S. A. From single steps to mass migration: The problem of scale in the movement ecology of the serengeti wildebeest. Philos. Trans. R. Soc. B Biol. Sci. 373, 2 (2018).
Roberts, C. P., Cain, J. W. & Cox, R. D. Identifying ecologically relevant scales of habitat selection: Diel habitat selection in elk: Diel. Ecosphere 8, 2 (2017).
Google Scholar
Sannier, C., McRoberts, R. E., Fichet, L. V. & Makaga, E. M. K. Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon. Remote Sens. Environ. 151, 138–148 (2014).
Google Scholar
Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).
Google Scholar
Hoogenboom, I., Daan, S., Dallinga, J. H. & Schoenmakers, M. Seasonal change in the daily timing of behaviour of the common vole Microtus arvalis. Oecologia 61, 18–31. https://doi.org/10.1007/BF00379084(1984).
Google Scholar
Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state–space models. Proc. R. Soc. B Biol. Sci. 282, 2 (2015).
Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. 89, 57–67 (2020).
Google Scholar
WCS, W. C. S.- & University, C. for I. E. S. I. N.-C.-C. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). (2005).
Hadfield, J. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. (2019).
Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models (Cambridge University Press, 2006).
Google Scholar
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Google Scholar
Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News https://doi.org/10.1016/s0306-4522(05)00880-8 (2006).
Google Scholar
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Google Scholar
Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).
Google Scholar
Houslay, T. M., Vierbuchen, M., Grimmer, A. J., Young, A. J. & Wilson, A. J. Testing the stability of behavioural coping style across stress contexts in the Trinidadian guppy. Funct. Ecol. 32, 424–438 (2018).
Google Scholar
Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13035 (2019).
Google Scholar
Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
Google Scholar
Yackulic, C. B., Strindberg, S., Maisels, F. & Blake, S. The spatial structure of hunter access determines the local abundance of forest elephants (Loxodonta africana cyclotis). Ecol. Appl. 21, 1296–1307 (2011).
Google Scholar
Blake, S. et al. Fruit, minerals, and forest elephant trails: Do all roads lead to Rome?. Biotropica 36, 392 (2006).
Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).
Google Scholar
Beirne, C. et al. Climatic and resource determinants of forest elephant movements. Front. Ecol. Evol. 8, 1–14 (2020).
Google Scholar
Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).
Google Scholar
Bush, E. R. et al. Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ 2020, 1–29 (2020).
Bush, E. R. et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 7791, 7791 (2020).
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).
Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).
Google Scholar
McDougall, P. T., Réale, D., Sol, D. & Reader, S. M. Wildlife conservation and animal temperament: Causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim. Conserv. 9, 39–48 (2006).
Google Scholar
Source: Ecology - nature.com