in

Microclimate feedbacks sustain power law clustering of encroaching coastal woody vegetation

  • 1.

    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).

    Article 

    Google Scholar 

  • 2.

    Scheffer, M., Carpenter, S., Foley, J., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Archer, S., Schimel, D. S. & Holland, E. A. Mechanisms of shrubland expansion: land use, climate, or carbon dioxide. Clim. Change 29, 91–99 (1995).

    Article 

    Google Scholar 

  • 4.

    Maher, E. L. & Germino, M. J. Microsite variation among conifer species during seedling establishment at alpine treeline. Ecoscience 13, 334–341 (2006).

    Article 

    Google Scholar 

  • 5.

    Knapp, A. K. et al. Shrub encroachment in North American grasslands: shifts in growth form dominance alters control of ecosystem carbon inputs. Glob. Change Biol. 14, 615–623 (2008).

    Article 

    Google Scholar 

  • 6.

    McKee, K. L. & Rooth, J. E. Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Glob. Change Biol. 14, 971–984 (2008).

    Article 

    Google Scholar 

  • 7.

    Huang, H., Zinnert, J. C., Wood, L. K., Young, D. R. & D’Odorico, P. Non-linear shift from grassland to shrubland in temperate barrier islands. Ecology 99, 1671–1681 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Huang, H., Anderegg, L. D. L., Dawson, T. E., Mote, S. & D’Odorico, P. Critical transition to woody plant dominance through microclimate feedbacks in North American coastal ecosystems. Ecology 101, e03107 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Huenneke, L. F., Anderson, J. P., Remmenga, M. & Schlesinger, W. H. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Glob. Change Biol. 8, 247–264 (2002).

    Article 

    Google Scholar 

  • 10.

    Li, J., Okin, G. S., Hartman, L. J. & Epstein, H. E. Quantitative assessment of wind erosion and soil nutrient loss in desert grasslands of southern New Mexico, USA. Biogeochemistry 85, 317–332 (2007).

    Article 

    Google Scholar 

  • 11.

    D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5, 520–530 (2012).

    Article 

    Google Scholar 

  • 12.

    Van Auken, O. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Evol. Syst. 31, 197–215 (2000).

    Article 

    Google Scholar 

  • 13.

    Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Gehrig-Fasel, J., Guisan, A. & Zimmermann, N. E. Tree line shifts in the Swiss Alps: climate change or land abandonment? J. Veg. Sci. 18, 571–582 (2007).

    Article 

    Google Scholar 

  • 15.

    Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl Acad. Sci. USA 111, 723–727 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    D’Odorico, P. et al. Vegetation–microclimate feedbacks in woodland–grassland ecotones. Glob. Ecol. Biogeogr. 22, 364–379 (2013).

    Article 

    Google Scholar 

  • 17.

    He, Y., D’Odorico, P. & De Wekker, S. F. The relative importance of climate change and shrub encroachment on nocturnal warming in the Southwestern United States. Int. J. Climatol. 35, 475–480 (2014).

    Article 

    Google Scholar 

  • 18.

    He, Y., D’Odorico, P., De Wekker, S. F., Fuentes, J. D. & Litvak, M. On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. J. Geophys. Res. Atmos. 115, D21120 (2010).

    Article 

    Google Scholar 

  • 19.

    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Sugihara, G. & May, R. M. Applications of fractals in ecology. Trends Ecol. Evol. 5, 79–86 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self- Organization. (Cambridge University Press, New York, 1997).

  • 24.

    Majumder, S., Tamma, K., Ramaswamy, S. & Guttal, V. Inferring critical thresholds of ecosystem transitions from spatial data. Ecology 100, e02722 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Staver, A. C., Asner, G. P., Rodriguez-Iturbe, I., Levin, S. A. & Smit, I. Spatial patterning among savanna trees in high resolution, spatially extensive data. Proc. Natl Acad. Sci. USA 116, 10685 (2019).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Kéfi, S. et al. Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecol. Lett. 14, 29–35 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Weissmann, H., Kent, R., Michael, Y. & Shnerb, N. M. Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition. PLoS ONE 12, e0189058 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Sankaran, S., Majumder, S., Viswanathan, A. & Guttal, V. Clustering and correlations: inferring resilience from spatial patterns in ecosystems. Methods Ecol. Evol. 10, 2079–2089 (2019).

    Article 

    Google Scholar 

  • 30.

    Zinnert, J. C. et al. Spatial–temporal dynamics in barrier island upland vegetation: the overlooked coastal landscape. Ecosystems 19, 685–697 (2016).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Thompson, J. A., Zinnert, J. C. & Young, D. R. Immediate effects of microclimate modification enhance native shrub encroachment. Ecosphere 8, e01687 (2017).

    Article 

    Google Scholar 

  • 32.

    Wood, L. K., Hays, S. & Zinnert, J. C. Decreased temperature variance associated with biotic composition enhances coastal shrub encroachment. Sci. Rep. 10, 8210 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor and Francis, London, 1985).

  • 34.

    Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Scanlon, T. M., Caylor, K. K., Levin, S. A. & Rodriguez-Iturbe, I. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449, 209–212 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Kéfi, S., Rietkerk, M., van Baalen, M. & Loreau, M. Local facilitation, bistability and transitions in arid ecosystems. Theor. Popul. Biol. 71, 367–379 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 3 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Dakos, V., Kéfi, S., Rietkerk, M., van Nes, E. H. & Scheffer, M. Slowing down in spatially patterned ecosystems at the brink of collapse. Am. Nat. 177, E153–E166 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Weerman, E. J. et al. Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecology 93, 608–618 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2012).

    Article 

    Google Scholar 

  • 41.

    van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    USACE-TEC & JALBTCX. Hyperspectral imagery for Hog Island, VA, 2013 ver 7. Environmental Data Initiative. https://doi.org/10.6073/pasta/6a5cc305e93c2baf9283facee688c504 (2018).

  • 43.

    Young, D. R. et al. Cross-scale patterns in shrub thicket dynamics in the Virginia barrier complex. Ecosystems 10, 854–863 (2007).

    Article 

    Google Scholar 

  • 44.

    Young, D. R., Shao, G. & Porter, J. H. Spatial and temporal growth dynamics of barrier island shrub thickets. Am. J. Bot. 82, 638–645 (1995).

    Article 

    Google Scholar 

  • 45.

    McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps (University of Massachusetts at Amherst, MA, 2012).

  • 46.

    Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009). 2009.

    Article 

    Google Scholar 

  • 47.

    Hayden, B. P. Ecosystem feedbacks on climate at the landscape scale. Philos. Trans. R. Soc. B, Biol. Sci. 353, 5–18 (1998).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Diving into the global problem of technology waste

    Imagining the distant past — and finding keys to the future