in

Ecological factors influence balancing selection on leaf chemical profiles of a wildflower

  • 1.

    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).

  • 2.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article 

    Google Scholar 

  • 3.

    Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26, 1101–1118 (2012).

    Article 

    Google Scholar 

  • 4.

    Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Kulbaba, M. W., Sheth, S. N., Pain, R. E., Eckhart, V. M. & Shaw, R. G. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 73, 1746–1758 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B 279, 3843–3852 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Steffen, W., Crutzen, P. J. & McNeil, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Zhang, X.-S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    McGuigan, K., Aguirre, J. D. & Blows, M. W. Simultaneous estimation of additive and mutational genetic variance in an outbred population of Drosophila serrata. Genetics 201, 1239–1251 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Huang, W. et al. Spontaneous mutations and the origin and maintenance of quantitative genetic variation. eLife 5, e14625 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8, 845–856 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Subramaniam, B. & Rausher, M. D. Balancing selection on a floral polymorphism. Evolution 54, 691–695 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Hedrick, P. W. & Thomson, G. Evidence for balancing selection at HLA. Genetics 104, 449–456 (1983).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Troth, A., Puzey, J. R., Kim, R. S., Willis, J. H. & Kelly, J. K. Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science 361, 475–478 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Delph, L. F. & Kelly, J. K. On the importance of balancing selection in plants. N. Phytol. 201, 45–56 (2014).

    Article 

    Google Scholar 

  • 20.

    Anderson, J. T., Wagner, M. R., Rushworth, C. A., Prasad, K. V. S. K. & Mitchell-Olds, T. The evolution of quantitative traits in complex environments. Heredity 112, 4–12 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Carmona, D., Lajeunesse, M. J. & Johnson, M. T. Plant traits that predict resistance to herbivores. Funct. Ecol. 25, 358–367 (2011).

    Article 

    Google Scholar 

  • 24.

    DeLucia, E. H., Nabity, P. D., Zavala, J. A. & Berenbaum, M. R. Climate change: resetting plant–insect interactions. Plant Physiol. 160, 1677–1685 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 26.

    Prasad, K. V. S. K. et al. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337, 1081–1084 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Bergelson, J., Dwyer, G. & Emerson, J. J. Models and data on plant–enemy coevolution. Annu. Rev. Genet. 35, 469–499 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Hodgins, K. A. & Barrett, S. C. H. Female reproductive success and the evolution of mating-type frequencies in tristylous populations. N. Phytol. 171, 569–580 (2006).

    Article 

    Google Scholar 

  • 29.

    Trotter, M. V. & Spencer, H. G. Complex dynamics occur in a single-locus, multiallelic model of general frequency-dependent selection. Theor. Popul. Biol. 76, 292–298 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Tuinstra, M. R., Ejeta, G. & Goldsbrough, P. B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic loci that differ at quantitative traits. Theor. Appl. Genet. 95, 1005–1011 (1997).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Salehin, M. et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat. Commun. 10, 4021 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Hossain, M. S. et al. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 77, 977–983 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Wang, B. et al. Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 126 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Bloom, T. C., Baskin, J. M. & Baskin, C. C. Ecological life history of the facultative woodland biennial Arabis laevigata variety laevigata (Brassicaceae): seed dispersal. J. Torrey Bot. Soc. 129, 21–28 (2002).

    Article 

    Google Scholar 

  • 36.

    Song, B.-H. et al. Multilocus patterns of nucleotide diversity, population structure, and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics 181, 1021–1033 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Mackay, T., Stone, E. & Ayroles, J. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Hedrick, P. W. Genetic polymorphism in heterogeneous environments: a decade later. Annu. Rev. Ecol. Syst. 17, 535–566 (1986).

    Article 

    Google Scholar 

  • 39.

    Hedrick, P. W. Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity 82, 126–133 (1999).

    Article 

    Google Scholar 

  • 40.

    Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Gillespie, J. H. & Langley, C. H. A general model to account for enzyme variation in natural populations. Genetics 76, 837–848 (1974).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Anderson, J. T., Willis, J. H. & Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 27, 258–266 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Oakley, C. G., Ågren, J., Atchison, R. A. & Schemske, D. W. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol. Ecol. 23, 4304–4315 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Price, N. et al. Combining population genomics and fitness QTLs to identify the genetics of local adaptation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 115, 5028–5033 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Abuelsoud, W., Hirschmann, F. & Papenbrock, J. in Drought Stress in Plants Vol. 1 (eds Hossain, M. A. et al.) 227–248 (Springer, 2016).

  • 48.

    Nguyen, D., Rieu, I., Mariani, C. & van Dam, N. M. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 91, 727–740 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Shani, E. M. et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr. Biol. 27, 437–444 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Hopkins, R. J., van Dam, N. M. & van Loon, J. J. A. Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54, 57–83 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Burow, M., Müller, R., Gershenzon, J. & Wittstock, U. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol. 32, 2333–2349 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Wagner, M. R. & Mitchell-Olds, T. Plasticity of plant defense and its evolutionary implications in wild populations of Boechera stricta. Evolution 72, 1034–1049 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package version 2.56.0 (2020).

  • 55.

    Wang et al. Correction to: Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 16 (2019).

    Article 

    Google Scholar 

  • 56.

    Carley, L. et al. Data to accompany: Ecological factors influence balancing selection on leaf chemical profiles of a wildflower. Dryad Data https://doi.org/10.5061/dryad.7h44j0zsr (2021).

  • 57.

    Atkinson, N. J., Lilley, C. J. & Urwin, P. E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162, 2028–2041 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Sharma, A. et al. Comprehensive analysis of plant rapid alkalization factor (RALF) genes. Plant Physiol. Biochem. 106, 82–90 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Dutilleul, C., Jourdain, A., Bourguignon, J. & Hugouvieux, V. The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol. 147, 239–251 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Jiang, S.-C. et al. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 88, 369–385 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Wen, J., Vanek-Krebitz, M., Hoffmann-Sommergruber, K., Scheiner, O. & Breitender, H. The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol. Phylogenet. Evol. 8, 317–333 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Koo, A. J., Fulda, M., Browse, J. & Ohlrogge, J. B. Identification of a plastid acyl‐acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. Plant J. 44, 620–632 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Henrissat, B. et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl Acad. Sci. USA 92, 7090–7094 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Imagining the distant past — and finding keys to the future

    Salmon going viral