Redfern, M. Plant Galls. The New Naturalist Library (Harper Collins, 2011).
Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 18, 512–522 (2003).
Google Scholar
Dawkins, R. The Extended Phenotype (Oxford University Press, 1982).
Raman, A. Morphogenesis of insect-induced plant galls: Facts and questions. Flora 206, 517–533 (2011).
Google Scholar
Gatjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. Rev. Biol. Trop. 67, 1359–1382 (2019).
Google Scholar
Gonçalves-Alvim, S. J. & Fernandes, G. W. Biodiversity of galling insects: Historical, community and habitat effects in four neotropical savannas. Biodivers. Conserv. 10, 79–98 (2001).
Google Scholar
Veldtman, R. & McGeoch, M. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: The importance of plant community composition. Austral. Ecol. 28, 1–13 (2003).
Google Scholar
Stuart, J., Chen, M.-S., Shukle, R. & Harris, M. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopath. 50, 339–357 (2012).
Google Scholar
Kono, H. Langrüssler aus japanischen Reich. Insecta Matsumurana 4, 145–162 (1930).
Morimoto, K. & Kojima, H. Weevils of the genus Smicronyx in Japan (Coleoptera: Curculionidae). Entomol. Rev. Jpn. 62, 1–9 (2007).
Hayakawa, H., Fujii, S. & Yoshitake, H. Reexamination of the host plant of Smicronyx madaranus (Coleoptera, Curculionidae, Smicronycinae). SAYABANE 30, 51–55 (2018) (in Japanese).
Yukawa, J. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105–113 (2000).
Google Scholar
Vitou, J., Skuhravá, M., SkuhravÝ, V., Scott, J. & Sheppard, A. The role of plant phenology in the host specificity of Gephyraulus raphanistri (Diptera: Cecidomyiidae) associated with Raphanus spp. (Brassicaceae). Eur. J. Entomol. 105, 113–119 (2008).
Google Scholar
Yamaguchi, H. et al. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 196, 586–595 (2012).
Google Scholar
Tanaka, Y., Okada, K., Asami, T. & Suzuki, Y. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Biosci. Biotechnol. Biochem. 77, 1942–1948 (2013).
Google Scholar
Liu, P., Yang, Z. X., Chen, X. M. & Foottit, R. G. The effect of the gall-forming aphid Schlechtendalia chinensis (Hemiptera: Aphididae) on leaf wing ontogenesis in Rhus chinensis (Sapindales: Anacardiaceae). Ann. Entomol. Soc. Am. 107, 242–250 (2014).
Google Scholar
Hirano, T. et al. Reprogramming of the developmental program of Rhus javanica during initial stage of gall induction by Schlechtendalia chinensis. Front. Plant Sci. 11, 471 (2020).
Google Scholar
Kaiser, B., Vogg, G., Fürst, U. B. & Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6, 45 (2015).
Google Scholar
Pattee, H. E., Allred, K. R. & Wiebe, H. H. Photosynthesis in dodder. Weeds 13, 193–195 (1965).
Google Scholar
van der Kooij, T. A. W., Krause, K., Dörr, I. & Krupinska, K. Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210, 701–707 (2000).
Google Scholar
Sherman, T. D., Pettigrew, W. T. & Vaughn, K. C. Structural and immunological characterization of the Cuscuta pentagona L. chloroplast. Plant Cell Physiol. 40, 592–603 (1999).
Google Scholar
Machado, M. A. & Zetsche, K. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181, 91–96 (1990).
Google Scholar
Hibberd, J. M. et al. Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205, 506–513 (1998).
Google Scholar
Taiz, L., Zieiger, E., Max Moller, I. & Angus, M. Plant Physiology and Development 6th edn. (Sinauer Associates, 2015).
Bartlett, L. & Connor, E. F. Exogenous phytohormones and the induction of plant galls by insects. Arthropod Plant Interact. 8, 339–348 (2014).
Tooker, J. F. & Helms, A. M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J. Chem. Ecol. 40, 742–753 (2014).
Google Scholar
Tokuda, M. et al. Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8, e62350 (2013).
Google Scholar
Suzuki, H. et al. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem. Mol. Biol. 53, 66–72 (2014).
Google Scholar
Yokoyama, C., Takei, M., Kouzuma, Y., Nagata, S. & Suzuki, Y. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. J. Insect Physiol. 101, 91–96 (2017).
Google Scholar
Kaiser, W., Huguet, E., Casas, J., Commin, C. & Giron, D. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. Biol. Sci. 277, 2311–2319 (2010).
Google Scholar
Body, M., Kaiser, W., Dubreuil, G., Casas, J. & Giron, D. Leaf-miners co-opt microorganisms to enhance their nutritional environment. J. Chem. Ecol. 39, 969–977 (2013).
Google Scholar
Giron, D. & Glevarec, G. Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world. J. Chem. Ecol. 40, 826–835 (2014).
Google Scholar
Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).
Google Scholar
Giron, D., Huguet, E., Stone, G. N. & Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 84, 70–89 (2016).
Google Scholar
Zhao, C. et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25, 613–620 (2015).
Google Scholar
Lemus, L. P. et al. Salivary proteins of a gall-inducing aphid and their impact on early gene responses of susceptible and resistant poplar genotypes. bioRxiv https://doi.org/10.1101/504613 (2018).
Google Scholar
Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).
Google Scholar
Senthil-Kumar, M. & Mysore, K. S. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protoc. 9, 1549–1562 (2014).
Google Scholar
Norkunas, K., Harding, R., Dale, J. & Dugdale, B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14, 71 (2018).
Google Scholar
Christiaens, O. et al. RNA interference: A promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Sci. Rep. 6, 38836 (2016).
Google Scholar
Maire, J., Vincent-Monégat, C., Masson, F., Zaidman-Rémy, A. & Heddi, A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome. 6, 6 (2018).
Google Scholar
Barnewall, E. C. & De Clerck-Floate, R. A. A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact. 6, 449–459 (2012).
Google Scholar
Aistova, E. V. & Bezborodov, V. G. Weevils belonging to the genus Smicronyx Schönherr, 1843 (Coleoptera, Curculionidae) affecting dodders (Cuscuta Linnaeus, 1753) in the Russian Far East. Russ. J. Biol. Invasions. 8, 184–188 (2017).
Google Scholar
Dinelli, G., Bonetti, A. & Tibiletti, E. Photosynthetic and accessory pigments in Cuscuta-Campestris Yuncker and some host species. Weed Res. 33, 253–260 (1993).
Google Scholar
Anikin, V. V., Nikelshparg, M. I., Nikelshparg, E. I. & Konyukhov, I. V. Photosynthetic activity of the dodder Cuscuta campestris (Convolvulaceae) in case of plant inhabitation by the gallformed weevil Smicronyx smreczynskii (Coleoptera, Curculionidae). Chem. Biol. Ecol. 17, 42–47 (2017) (in Russian).
Zagorchev, L. I., Albanova, I. A., Tosheva, A. G., Li, J. & Teofanova, D. R. Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris. Planta 248, 591–599 (2018).
Google Scholar
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012).
Google Scholar
Carneiro, R. G. D. S. & Isaias, R. M. D. S. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects. AoB Plants. 7, plv086 (2015).
Google Scholar
Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).
Google Scholar
Kawase, M., Hanba, Y. T. & Katsuhara, M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J. Plant Res. 126, 517–527 (2013).
Google Scholar
Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph Stat. 5, 299–314 (1996).
Source: Ecology - nature.com