in

Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean

  • 1.

    Behrenfeld MJ, Boss ES. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob Chang Biol. 2018;24:55–77.

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.

    CAS 
    Article 

    Google Scholar 

  • 3.

    Calbet A, Landry MR. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 2004;49:51–7.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Baudoux A-C, Noordeloos AAM, Veldhuis MJW, Brussaard CPD. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat Micro Ecol. 2006;44:207–17.

    Article 

    Google Scholar 

  • 5.

    Vardi A, Haramaty L, Van Mooy BAS, Fredricks HF, Kimmance SA, Larsen A, et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci. 2012;109:19327–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Mojica KDA, Huisman J, Wilhelm SW, Brussaard CPD. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 2016;10:500–13.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Safi KA, Brian Griffiths F, Hall JA. Microzooplankton composition, biomass and grazing rates along the WOCE SR3 line between Tasmania and Antarctica. Deep Sea Res Part I Oceanogr Res Pap. 2007;54:1025–41.

    Article 

    Google Scholar 

  • 8.

    Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74.

    Article 

    Google Scholar 

  • 9.

    Bratbak G, Egge JK, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser. 1993;93:39–48.

    Article 

    Google Scholar 

  • 10.

    Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae. 2005;4:875–93.

    Article 

    Google Scholar 

  • 11.

    Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea. Bioscience. 1999;49:781–8.

    Article 

    Google Scholar 

  • 12.

    Brussaard CPD, Timmermans KR, Uitz J, Veldhuis MJW. Virioplankton dynamics and virally induced phytoplankton lysis versus microzooplankton grazing southeast of the Kerguelen (Southern Ocean). Deep Sea Res Part II Top Stud Oceanogr. 2008;55:752–65.

    Article 

    Google Scholar 

  • 13.

    Weitz JS, Wilhelm SW. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep. 2012;4:2–9.

    Article 

    Google Scholar 

  • 14.

    Brussaard CPD, Martínez J. Algal bloom viruses. Plant Viruses. 2008;2:1–13.

    Google Scholar 

  • 15.

    Nagasaki K. Dinoflagellates, diatoms, and their viruses. J Microbiol. 2008;46:235–43.

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Coy SR, Gann ER, Pound HL, Short SM, Wilhelm SW. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses. 2018;10:487.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Muhling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: Evidence for viral control of phytoplankton. Environ Microbiol. 2005;7:499–508.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Haaber J, Middelboe M. Viral lysis of Phaeocystis pouchetii: Implications for algal population dynamics and heterotrophic C, N and P cycling. ISME J. 2009;3:430–41.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Brussaard CPD. Viral control of phytoplankton populations—a review. J Eukaryot Microbiol. 2004;51:125–38.

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Evans C, Brussaard CPD. Viral lysis and microzooplankton grazing of phytoplankton throughout the Southern Ocean. Limnol Oceanogr. 2012;57:1826–37.

    Article 

    Google Scholar 

  • 21.

    Brussaard CPD, Noordeloos AAM, Witte H, Collenteur MCJ, Schulz K, Ludwig A, et al. Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences. 2013;10:719–31.

    Article 

    Google Scholar 

  • 22.

    Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC, Graven HD, et al. Global ocean storage of anthropogenic carbon. Biogeosciences. 2013;10:2169–91.

    CAS 
    Article 

    Google Scholar 

  • 23.

    Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86.

    Article 

    Google Scholar 

  • 24.

    Bakker DCE, De Baar HJW, Bathmann UV. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 1997;44:91–127.

    Article 

    Google Scholar 

  • 25.

    Moreau S, Schloss IR, Mostajir B, Demers S, Almandoz GO, Ferrario ME, et al. Influence of microbial community composition and metabolism on air–sea ΔpCO2 variation off the western Antarctic Peninsula. Mar Ecol Prog Ser. 2012;446:45–59.

    CAS 
    Article 

    Google Scholar 

  • 26.

    Ducklow H, Clarke A, Dickhut R, Doney SC, Geisz H, Huang K, et al. The marine system of the Western Antarctic Peninsula. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A, editors. Antarctic ecosystems: an extreme environment in a changing world. Blackwell Publishing Ltd.; 2012. pp. 121–59.

  • 27.

    Shreeve RS, Ward P, Whitehouse MJ. Copepod growth and development around South Georgia: Relationships with temperature, food and krill. Mar Ecol Prog Ser. 2002;233:169–83.

    Article 

    Google Scholar 

  • 28.

    Barrera-Oro E. The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci. 2002;14:293–309.

    Article 

    Google Scholar 

  • 29.

    Belton B, Thilsted SH. Fisheries in transition: Food and nutrition security implications for the global South. Glob Food Sec. 2014;3:59–66.

    Article 

    Google Scholar 

  • 30.

    Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr. 2015;130:205–48.

    Article 

    Google Scholar 

  • 31.

    Gordon AL. Bottom water formation. In: Steele JH, Turekian KK, Thorpe SA, editors. Encyclopedia of ocean sciences, 1st ed. Elsevier; 2001. pp. 334–40.

  • 32.

    Jacobs SS. Bottom water production and its links with the thermohaline circulation. Antarct Sci. 2004;16:427–37.

    Article 

    Google Scholar 

  • 33.

    Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Chang. 2019;9:781–6.

    CAS 
    Article 

    Google Scholar 

  • 34.

    Sommer U, Lengfellner K. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol. 2008;14:1199–208.

    Article 

    Google Scholar 

  • 35.

    Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Chang Biol. 2004;10:1973–80.

    Article 

    Google Scholar 

  • 36.

    Biggs TEG, Alvarez-Fernandez S, Evans C, Mojica KDA, Rozema PD, Venables HJ, et al. Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biol. 2019;42:1997–2015.

    Article 

    Google Scholar 

  • 37.

    Clarke A, Meredith MP, Wallace MI, Brandon MA, Thomas DN. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Res Part II Top Stud Oceanogr. 2008;55:1988–2006.

    Article 

    Google Scholar 

  • 38.

    Marie D, Partensky F, Vaulot D, Brussaard CPD. Enumeration of phytoplankton, bacteria, and viruses in marine samples. Curr Protoc Cytom. 1999;10:11.11.1–5.

    Google Scholar 

  • 39.

    Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Vaulot D. CYTOPC: processing software for flow cytometric data. Signal Noise. 1989;2:8.

    Google Scholar 

  • 41.

    Biggs TEG, Brussaard CPD, Evans C, Venables HJ, Pond DW. Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters. ICES J Mar Sci. 2020;77:1738–51.

    Article 

    Google Scholar 

  • 42.

    Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Mojica KDA, Evans C, Brussaard CPD. Flow cytometric enumeration of marine viral populations at low abundances. Aquat Microb Ecol. 2014;71:203–9.

    Article 

    Google Scholar 

  • 44.

    Brussaard CPD, Payet JP, Winter C, Weinbauer MG. Quantification of aquatic viruses by flow cytometry. Man Aquat viral Ecol. 2010;11:102–9.

    Article 

    Google Scholar 

  • 45.

    Lawrence JE, Brussaard CPD, Suttle CA. Virus-specific responses of Heterosigma akashiwo to infection. Appl Environ Microbiol. 2006;72:7829–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Tomaru Y, Nagasaki K. Flow cytometric detection and enumeration of DNA and RNA viruses infecting marine eukaryotic microalgae. J Oceanogr. 2007;63:215–21.

    CAS 
    Article 

    Google Scholar 

  • 47.

    Jacquet S, Heldal M, Iglesias-Rodriguez D, Larsen A, Wilson W, Bratbak G. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat Micro Ecol. 2002;27:111–24.

    Article 

    Google Scholar 

  • 48.

    Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Brussaard CPD, Thyrhaug R, Marie D, Bratbak G. Flow cytometric analyses of viral infection in two marine phytoplankton species, Micromonas pusilla (Prasinophyceae) and Phaeocystis pouchetii (Prymnesiophyceae). J Phycol. 1999;35:941–8.

    Article 

    Google Scholar 

  • 50.

    Kimmance SA, Wilson WH, Archer SD. Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: Limitations associated with method sensitivity in natural waters. Aquat Microb Ecol. 2007;49:207–22.

    Article 

    Google Scholar 

  • 51.

    Garrison DL, Gowing MM, Hughes MP, Campbell L, Caron DA, Dennett MR, et al. Microbial food web structure in the Arabian Sea: A US JGOFS study. Deep Sea Res Part II Top Stud Oceanogr. 2000;47:1387–422.

    Article 

    Google Scholar 

  • 52.

    Worden AZ, Nolan JK, Palenik B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr. 2004;49:168–79.

    CAS 
    Article 

    Google Scholar 

  • 53.

    van Leeuwe MA, Webb AL, Venables HJ, Visser RJW, Meredith MP, Elzenga JTM, et al. Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers. Limnol Oceanogr. 2020;65:1651–68.

    Article 

    Google Scholar 

  • 54.

    Baudoux A-C, Veldhuis MJW, Witte HJ, Brussaard CPD. Viruses as mortality agents of picophytoplankton in the deep chlorophyll maximum layer during IRONAGES III. Limnol Oceanogr. 2007;52:2519–29.

    CAS 
    Article 

    Google Scholar 

  • 55.

    Baudoux A-C, Veldhuis MJW, Noordeloos AAM, van Noort G, Brussaard CPD. Estimates of virus- vs. grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat Micro Ecol. 2008;52:69–82.

    Article 

    Google Scholar 

  • 56.

    Kranzler CF, Krause JW, Brzezinski MA, Edwards BR, Biggs WP, Maniscalco M, et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat Microbiol. 2019;4:1790–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Tomaru Y, Takao Y, Suzuki H, Nagumo T, Nagasaki K. Isolation and characterization of a single-stranded RNA virus infecting the bloom-forming diatom Chaetoceros socialis. Appl Environ Microbiol. 2009;75:2375–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Kattner G, Hagen W. Lipids in marine copepods: Latitudinal characteristics and perspective to global warming. In: Kainz M, Brett M, Arts M, editors. Lipids in aquatic ecosystems. Springer New York; 2009. pp. 257–80.

  • 59.

    Ploug H, Iversen MH, Fischer G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol Oceanogr. 2008;53:1878–86.

    Article 

    Google Scholar 

  • 60.

    Voss M. Content of copepod faecal pellets in relation to food supply in Kiel Bight and its effect on sedimentation rate. Mar Ecol Prog Ser. 1991;75:217–25.

    Article 

    Google Scholar 

  • 61.

    Lønborg C, Middelboe M, Brussaard CPD. Viral lysis of Micromonas pusilla: Impacts on dissolved organic matter production and composition. Biogeochemistry. 2013;116:231–40.

    Article 
    CAS 

    Google Scholar 

  • 62.

    Yamada Y, Tomaru Y, Fukuda H, Nagata T. Aggregate formation during the viral lysis of a marine diatom. Front Mar Sci. 2018;5:167.

  • 63.

    Maat DS, Crawfurd KJ, Timmermans KR, Brussaard CPD. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact. Appl Environ Microbiol. 2014;80:3119–27.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Maat DS, Brussaard CPD. Both phosphorus- and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat Micro Ecol. 2016;77:87–97.

    Article 

    Google Scholar 

  • 65.

    Maat DS, de Blok R, Brussaard CPD. Combined phosphorus limitation and light stress prevent viral proliferation in the phytoplankton species Phaeocystis globosa, but Not in Micromonas pusilla. Front Mar Sci. 2016;3:160.

  • 66.

    Maat DS, Biggs TEG, Evans C, van Bleijswijk JDL, van Der Wel NN, Dutilh BE, et al. Characterization and temperature dependence of arctic Micromonas polaris viruses. Viruses. 2017;9:6–9.

    Article 
    CAS 

    Google Scholar 

  • 67.

    Piedade GJ, Wesdorp EM, Montenegro-Borbolla E, Maat DS, Brussaard CPD. Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses. 2018;10:676.

  • 68.

    Gann ER, Gainer PJ, Reynolds TB, Wilhelm SW. Influence of light on the infection of Aureococcus anophagefferens CCMP 1984 by a “giant virus”. PLoS ONE. 2020;15:e0226758.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Evans C, Wilson WH. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi. Limnol Oceanogr. 2008;53:2035–40.

    Article 

    Google Scholar 

  • 70.

    Vermont AI, Martínez Martínez J, Waller JD, Gilg IC, Leavitt AH, Floge SA, et al. Virus infection of Emiliania huxleyi deters grazing by the copepod Acartia tonsa. J Plankton Res. 2016;38:1194–205.

    Article 

    Google Scholar 

  • 71.

    González JM, Suttle CA. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser. 1993;94:1–10.

    Article 

    Google Scholar 

  • 72.

    Rose JM, Caron DA. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr. 2007;52:886–95.

    Article 

    Google Scholar 

  • 73.

    Helenius LK, Saiz E. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey. PLoS ONE. 2017;12:e0172902.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    Djeghri N, Atkinson A, Fileman ES, Harmer RA, Widdicombe CE, McEvoy AJ, et al. High prey-predator size ratios and unselective feeding in copepods: a seasonal comparison of five species with contrasting feeding modes. Prog Oceanogr. 2018;165:63–74.

    Article 

    Google Scholar 

  • 75.

    Gonçalves RJ, Gréve H, van S, Couespel D, Kiørboe T. Mechanisms of prey size selection in a suspension-feeding copepod, Temora longicornis. Mar Ecol Prog Ser. 2014;517:61–74.

    Article 

    Google Scholar 

  • 76.

    Zhao Z, Gonsior M, Schmitt-Kopplin P, Zhan Y, Zhang R, Jiao N, et al. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J. 2019;13:2551–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: Projections, commitments, and irreversibility. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and NY, USA: Cambridge University Press; 2013.

  • 78.

    Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science. 2009;323:1470–3.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Arrigo KR, van Dijken GL. Continued increases in Arctic Ocean primary production. Prog Oceanogr. 2015;136:60–70.

    Article 

    Google Scholar 

  • 80.

    Vernet M, Martinson D, Iannuzzi R, Stammerjohn S, Kozlowski W, Sines K, et al. Primary production within the sea-ice zone west of the Antarctic Peninsula: I—Sea ice, summer mixed layer, and irradiance. Deep Sea Res Part II Top Stud Oceanogr. 2008;55:2068–85.

    Article 

    Google Scholar 

  • 81.

    Deppeler SL, Davidson AT. Southern Ocean phytoplankton in a changing climate. Front Mar Sci. 2017;4:40.

  • 82.

    Van de Poll WH, Kulk G, Rozema PD, Brussaard CPD, Visser RJW, Buma AGJ. Contrasting glacial meltwater effects on post-bloom phytoplankton on temporal and spatial scales in Kongsfjorden. Spitsbergen Elem Sci Anth. 2018;6:50.

    Article 

    Google Scholar 

  • 83.

    Ardyna M, Babin M, Gosselin M, Devred E, Rainville L, Tremblay J-É. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett. 2014;41:6207–12.

    Article 

    Google Scholar 

  • 84.

    Venables HJ, Clarke A, Meredith MP. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol Oceanogr. 2013;58:1035–47.

    Article 

    Google Scholar 

  • 85.

    Mendes CRB, Tavano VM, Dotto TS, Kerr R, de Souza MS, Garcia CAE, et al. New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep Sea Res Part II Top Stud Oceanogr. 2017;149:161–70.

    Article 
    CAS 

    Google Scholar 

  • 86.

    Rozema PD, Venables HJ, van de Poll WH, Clarke A, Meredith MP, Buma AGJ. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol Oceanogr. 2017;62:235–52.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere