in

Limited potential for bird migration to disperse plants to cooler latitudes

  • 1.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Article 

    Google Scholar 

  • 7.

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    González-Varo, J. P., López-Bao, J. V. & Guitián, J. Seed dispersers help plants to escape global warming. Oikos 126, 1600–1606 (2017).

    Article 

    Google Scholar 

  • 11.

    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152 (2008).

    Article 

    Google Scholar 

  • 13.

    Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. Ecography 42, 1280–1297 (2019).

    Google Scholar 

  • 14.

    Bacles, C. F. E., Lowe, A. J. & Ennos, R. A. Effective seed dispersal across a fragmented landscape. Science 311, 628 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Jordano, P., García, C., Godoy, J. A. & García-Castaño, J. L. Differential contribution of frugivores to complex seed dispersal patterns. Proc. Natl Acad. Sci. USA 104, 3278–3282 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Breitbach, N., Böhning-Gaese, K., Laube, I. & Schleuning, M. Short seed-dispersal distances and low seedling recruitment in farmland populations of bird-dispersed cherry trees. J. Ecol. 100, 1349–1358 (2012).

    Article 

    Google Scholar 

  • 17.

    Cain, M. L., Damman, H. & Muir, A. Seed dispersal and the Holocene migration of woodland herbs. Ecol. Monogr. 68, 325–347 (1998).

    Article 

    Google Scholar 

  • 18.

    Nathan, R. et al. Spread of North American wind-dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Viana, D. S., Gangoso, L., Bouten, W. & Figuerola, J. Overseas seed dispersal by migratory birds. Proc. R. Soc. Lond. B 283, 20152406 (2016).

    Google Scholar 

  • 21.

    Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 36, 430–438 (2013).

    Article 

    Google Scholar 

  • 22.

    Carlquist, S. The biota of long-distance dispersal. V. Plant dispersal to Pacific islands. Bull. Torrey Bot. Club 94, 129–162 (1967).

    Article 

    Google Scholar 

  • 23.

    Esteves, C. F., Costa, J. M., Vargas, P., Freitas, H. & Heleno, R. H. On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS ONE 10, e0138882 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Allometric scaling of long-distance seed dispersal by migratory birds. Am. Nat. 181, 649–662 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Martínez-López, V., García, C., Zapata, V., Robledano, F. & De la Rúa, P. Intercontinental long-distance seed dispersal across the Mediterranean basin explains population genetic structure of a bird-dispersed shrub. Mol. Ecol. 29, 1408–1420 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Newton, I. The Migration Ecology of Birds (Elsevier, 2010).

  • 27.

    Sorensen, A. E. Interactions between birds and fruit in a temperate woodland. Oecologia 50, 242–249 (1981).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    González-Varo, J. P., Arroyo, J. M. & Jordano, P. The timing of frugivore-mediated seed dispersal effectiveness. Mol. Ecol. 28, 219–231 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Jordano, P. in Seeds: The Ecology of Regeneration of Plant Communities (ed. Gallagher, R. S.) 18–61 (CABI, 2014).

  • 30.

    Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).

  • 31.

    Gallinat, A. S. et al. Patterns and predictors of fleshy fruit phenology at five international botanical gardens. Am. J. Bot. 105, 1824–1834 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl Acad. Sci. USA 110, 8996–9000 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Mitter, C., Farrell, B. & Futuyma, D. J. Phylogenetic studies of insect–plant interactions: insights into the genesis of diversity. Trends Ecol. Evol. 6, 290–293 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738–750 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).

    Article 

    Google Scholar 

  • 36.

    Beresford, A. E. et al. Phenology and climate change in Africa and the decline of Afro-Palearctic migratory bird populations. Remote Sens. Ecol. Conserv. 5, 55–69 (2019).

    Article 

    Google Scholar 

  • 37.

    Nilsson, C., Bäckman, J. & Alerstam, T. Seasonal modulation of flight speed among nocturnal passerine migrants: differences between short- and long-distance migrants. Behav. Ecol. Sociobiol. 68, 1799–1807 (2014).

    Article 

    Google Scholar 

  • 38.

    Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10, 63–68 (2020).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Brochet, A.-L. et al. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv. Int. 26, 1–28 (2016).

    Article 

    Google Scholar 

  • 42.

    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Stiles, E. W. Patterns of fruit presentation and seed dispersal in bird-disseminated woody plants in the eastern deciduous forest. Am. Nat. 116, 670–688 (1980).

    Article 

    Google Scholar 

  • 44.

    Noma, N. & Yumoto, T. Fruiting phenology of animal-dispersed plants in response to winter migration of frugivores in a warm temperate forest on Yakushima Island, Japan. Ecol. Res. 12, 119–129 (1997).

    Article 

    Google Scholar 

  • 45.

    Lovas-Kiss, Á. et al. Shorebirds as important vectors for plant dispersal in Europe. Ecography 42, 956–967 (2019).

    Article 

    Google Scholar 

  • 46.

    Coughlan, N. E., Kelly, T. C., Davenport, J. & Jansen, M. A. K. Up, up and away: bird-mediated ectozoochorous dispersal between aquatic environments. Freshw. Biol. 62, 631–648 (2017).

    Article 

    Google Scholar 

  • 47.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 48.

    Rivas-Martínez, S., Penas, A. & Díaz, T. Bioclimatic Map of Europe, Thermoclimatic Belts (Cartographic Service, Univ. León, 2004).

  • 49.

    Olesen, J. M. et al. Missing and forbidden links in mutualistic networks. Proc. R. Soc. Lond. B 278, 725–732 (2011).

    Google Scholar 

  • 50.

    Snow, B. & Snow, D. Birds and Berries (T. and A. D. Poyser, 1988).

  • 51.

    Stiebel, H. & Bairlein, F. Frugivory in central European birds I: diet selection and foraging. Vogelwarte 46, 1–23 (2008).

    Google Scholar 

  • 52.

    González-Varo, J. P., Arroyo, J. M. & Jordano, P. Who dispersed the seeds? The use of DNA barcoding in frugivory and seed dispersal studies. Methods Ecol. Evol. 5, 806–814 (2014).

    Article 

    Google Scholar 

  • 53.

    Simmons, B. I. et al. Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networks. J. Anim. Ecol. 87, 995–1007 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Plein, M. et al. Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94, 1296–1306 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Albrecht, J. et al. Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. J. Ecol. 103, 526–536 (2015).

    Article 

    Google Scholar 

  • 56.

    García, D. Birds in ecological networks: insights from bird–plant mutualistic interactions. Ardeola 63, 151–180 (2016).

    Article 

    Google Scholar 

  • 57.

    Farwig, N., Schabo, D. G. & Albrecht, J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J. Ecol. 105, 20–28 (2017).

    Article 

    Google Scholar 

  • 58.

    Torroba Balmori, P., Zaldívar García, P. & Hernández Lázaro, Á. Semillas de Frutos Carnosos del Norte Ibérico: Guía de Identificación (Ediciones Univ. Valladolid, 2013).

  • 59.

    Stiebel, H. Frugivorie bei Mitteleuropäischen Vögeln. PhD thesis, Univ. Oldenburg (2003).

  • 60.

    Jordano, P. Data from: Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. Dryad https://doi.org/10.5061/dryad.9tb73 (2013).

  • 61.

    González-Varo, J. P., Carvalho, C. S., Arroyo, J. M. & Jordano, P. Unravelling seed dispersal through fragmented landscapes: frugivore species operate unevenly as mobile links. Mol. Ecol. 26, 4309–4321 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Ratnasingham, S. & Hebert, P. D. N. bold: the Barcode of Life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    CBOL Plant Working Group et al. A DNA barcode for land plants. Proc. Natl Acad. Sci. USA 106, 12794–12797 (2009).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 64.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    González-Varo, J. P., Díaz-García, S., Arroyo, J. M. & Jordano, P. Seed dispersal by dispersing juvenile animals: a source of functional connectivity in fragmented landscapes. Biol. Lett. 15, 20190264 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Fuentes, M. Latitudinal and elevational variation in fruiting phenology among western European bird-dispersed plants. Ecography 15, 177–183 (1992).

    Article 

    Google Scholar 

  • 67.

    Herrera, C. M. A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecol. Monogr. 54, 1–23 (1984).

    Article 

    Google Scholar 

  • 68.

    Hampe, A. & Bairlein, F. Modified dispersal-related traits in disjunct populations of bird-dispersed Frangula alnus (Rhamnaceae): a result of its Quaternary distribution shifts? Ecography 23, 603–613 (2000).

    Article 

    Google Scholar 

  • 69.

    Thomas, P. A. & Mukassabi, T. A. Biological flora of the British Isles: Ruscus aculeatus. J. Ecol. 102, 1083–1100 (2014).

    Article 

    Google Scholar 

  • 70.

    Jordano, P. Biología de la reproducción de tres especies del género Lonicera (Caprifoliaceae) en la Sierra de Cazorla. An. Jardin Botanico Madr. 1979 48, 31–52 (1990).

    Google Scholar 

  • 71.

    Debussche, M. & Isenmann, P. A Mediterranean bird disperser assemblage: composition and phenology in relation to fruit availability. Rev. Ecol. 47, 411–432 (1992).

    Google Scholar 

  • 72.

    Jordano, P. Diet, fruit choice and variation in body condition of frugivorous warblers in Mediterranean scrubland. Ardea 76, 193–209 (1988).

    Google Scholar 

  • 73.

    Barroso, Á., Amor, F., Cerdá, X. & Boulay, R. Dispersal of non-myrmecochorous plants by a “keystone disperser” ant in a Mediterranean habitat reveals asymmetric interdependence. Insectes Soc. 60, 75–86 (2013).

    Article 

    Google Scholar 

  • 74.

    González-Varo, J. P. Fragmentation, habitat composition and the dispersal/predation balance in interactions between the Mediterranean myrtle and avian frugivores. Ecography 33, 185–197 (2010).

    Article 

    Google Scholar 

  • 75.

    Sánchez-Salcedo, E. M., Martínez-Nicolás, J. J. & Hernández, F. Phenological growth stages of mulberry tree (Morus sp.) codification and description according to the BBCH scale. Ann. Appl. Biol. 171, 441–450 (2017).

    Article 

    Google Scholar 

  • 76.

    García-Castaño, J. L. Consecuencias Demográficas de la Dispersión de Semillas por Aves y Mamíferos Frugívoros en la Vegetación Mediterránea de Montaña. PhD thesis, Univ. Sevilla (2001).

  • 77.

    Gilbert, O. L. Symphoricarpos albus (L.) S. F. Blake (S. rivularis Suksd., S. racemosus Michaux). J. Ecol. 83, 159–166 (1995).

    Article 

    Google Scholar 

  • 78.

    Billerman, S. M. et al. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2020).

  • 79.

    Tellería, J., Asensio, B. & Díaz, M. Aves Ibéricas: II. Paseriformes (J. M. Reyero Editor, 1999).

  • 80.

    Díaz, M., Asensio, B. & Tellería, J. L. Aves Ibéricas: I. No paseriformes (J. M. Reyero Editor, 1996).

  • 81.

    SEO/Birdlife. La Enciclopedia de las Aves de España (SEO/Birdlife-Fundación BBVA, 2019).

  • 82.

    Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia. 2. Passeriformi (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Tipografia SCR-Roma, 2008).

  • 83.

    Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia. 1. Non-Passeriformi (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Tipografia CSR-Roma, 2008).

  • 84.

    Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland (T. & A. D. Poyser, 2002).

  • 85.

    Cramp, S. The Complete Birds of the Western Paleartic (CD-ROM) (Oxford Univ. Press, 1998).

  • 86.

    Bairlein, F. et al. Atlas des Vogelzugs – Ringfunde deutscher Brut- und Gastvögel (Aula, 2014).

  • 87.

    Tomiałojć, L. & Stawarczyk, T. Awifauna Polski: Rozmieszczenie, Liczebność i Zmiany (PTPP pro. Natura, 2003).

  • 88.

    Busse, P., Gromadzki, M. & Szulc, B. Obserwacje przelotu jesiennego ptaków w roku 1960 w Górkach Wschodnich koło Gdańska (Observations on bird migration at Górki Wschodnie near Gdańsk Autumn 1960). Acta Ornithologica 7, 305–336 (1963).

    Google Scholar 

  • 89.

    Bobrek, R. et al. Międzysezonowa powtarzalność dynamiki jesiennej migracji wróblowych Passeriformes nad Jeziorem Rakutowskim. Ornis Polonica 57, 39–57 (2016).

    Google Scholar 

  • 90.

    Keller, M. et al. Ptaki Środkowej Wisły (M-ŚTO, 2017).

  • 91.

    Bocheński, M. et al. Awifauna przelotna i zimująca środkowego odcinka doliny Odry. Ptaki Śląska 16, 123–161 (2006).

    Google Scholar 

  • 92.

    BTO. BirdTrack. http://www.birdtrack.net (accessed October 2018).

  • 93.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 94.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn (SAGE, 2011).

  • 95.

    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).

    Article 

    Google Scholar 

  • 96.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 97.

    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 101.

    Molina-Venegas, R. & Rodríguez, M. Á. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 102.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • 103.

    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Article 

    Google Scholar 

  • 104.

    Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 105.

    Bates, D., Maechler, M. & Bolker, B. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-19 https://CRAN.R-project.org/package=lme4 (2013).


  • Source: Ecology - nature.com

    Grace Moore ’21 receives Michel David-Weill Scholarship

    Revisiting a quantum past for a fusion future