in

Asymmetric physiological response of a reef-building coral to pulsed versus continuous addition of inorganic nutrients

  • 1.

    Schaffelke, B., Carleton, J., Skuza, M., Zagorskis, I. & Furnas, M. J. Water quality in the inshore Great Barrier Reef lagoon: implications for long-term monitoring and management. Mar. Pollut. Bull. 65, 249–260 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Kleypas, J. A., McManus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999).

    Article 

    Google Scholar 

  • 3.

    Barnes, D. J. & Devereux, M. J. Productivity and calcification on a coral reef: A survey using pH and oxygen electrode techniques. J. Exp. Mar. Biol. Ecol. 79, 213–231 (1984).

    Article 

    Google Scholar 

  • 4.

    Hoegh-Guldberg, O. & Williamson, J. Availability of two forms of dissolved nitrogen to the coral Pocillopora damicornis and its symbiotic zooxanthellae. Mar. Biol. 133, 561–570 (1999).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Koop, K. et al. ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42, 91–120 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata : effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Grover, R., Maguer, J.-F., Allemand, D. & Ferrier-Pagès, C. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J. Exp. Biol. 211, 860–865 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Godinot, C., Ferrier-Pagés, C. & Grover, R. Control of phosphate uptake by zooxanthellae and host cells in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 54, 1627–1633 (2009).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Wang, J. & Douglas, A. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis?. J. Exp. Biol. 201, 2445–2453 (1998).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Tanaka, Y., Suzuki, A. & Sakai, K. The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. ISME J. https://doi.org/10.1038/s41396-017-0019-3 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Miller, D. J. & Yellowlees, D. Inorganic nitrogen uptake by symbiotic marine cnidarians: a critical review. Proc. R. Soc. B Biol. Sci. 237, 109–125 (1989).

    ADS 

    Google Scholar 

  • 14.

    Pernice, M. et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 6, 1314–1324 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Yellowlees, D., Rees, T. A. V. & Leggat, W. Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell Environ. 31, 679–694 (2008).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Krueger, T. et al. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc. R. Soc. B Biol. Sci. 287, 20200049 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Godinot, C., Houlbrèque, F., Grover, R., Ferrier-Pagès, C. & Larsen, A. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6, e25024 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Ferrier-Pagès, C., Godinot, C., D’Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 86, 262–277 (2016).

    Article 

    Google Scholar 

  • 19.

    Snidvongs, A. & Kinzie, R. A. Effects of nitrogen and phosphorus enrichement on in vivo symbiotic zooxanthellae of Pocillopora damicornis. Mar. Biol. 118, 705–711 (1994).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).

    Article 

    Google Scholar 

  • 21.

    Roberty, S., Béraud, E., Grover, R. & Ferrier-Pagès, C. Coral productivity is co-limited by bicarbonate and ammonium availability. Microorganisms 8, 640 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Muller-Parker, G., Cook, C. B. & D’elia, C. F. Elemental composition of the coral Pocillopora damicornis exposed to elevated seawater ammonium. Pac. Sci. 48, 234–246 (1994).

    CAS 

    Google Scholar 

  • 23.

    Muller-Parker, G., McCloskey, L., Hoegh-Guldberg, O. & McAuley, P. Effect of ammonium enrichment on animal and algal biomass of the coral Pocillopora damicornis. Pac. Sci. 48, 273–283 (1994).

    CAS 

    Google Scholar 

  • 24.

    Dubinsky, Z. et al. The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 239, 231–246 (1990).

    ADS 

    Google Scholar 

  • 25.

    Marubini, F. & Davies, P. S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127, 319–328 (1996).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 20172718 (2018).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral-symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Stambler, N., Popper, N., Dubinsky, Z. & Stimson, J. Effects of nutrient enrichment and water motion on the coral Pocillopora damicornis. Pac. Sci. 45, 299–307 (1991).

    Google Scholar 

  • 30.

    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl. Acad. Sci. U. S. A. 118, e2022653118 (2021).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 31.

    Bassim, K. & Sammarco, P. Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar. Biol. 142, 241–252 (2003).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, C09S07 (2005).

    ADS 

    Google Scholar 

  • 33.

    Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Meyer, J. L. & Schultz, E. T. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs1. Limnol. Oceanogr. 30, 146–156 (1985).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Holbrook, S. J., Brooks, A. J., Schmitt, R. J. & Stewart, H. L. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155, 521–530 (2008).

    Article 

    Google Scholar 

  • 38.

    Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Schmidt, S., Dennison, W. C., Moss, G. J. & Stewart, G. R. Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Funct. Plant Biol. 31, 517–528 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Staunton Smith, J. & Johnson, C. R. Nutrient inputs from seabirds and humans on a populated coral cay. Mar. Ecol. Prog. Ser. 124, 189–200 (1995).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Ezzat, L. et al. Nutrient starvation impairs the trophic plasticity of reef-building corals under ocean warming. Funct. Ecol. 33, 643–653 (2019).

    Article 

    Google Scholar 

  • 42.

    Ezzat, L., Maguer, J. F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 1–11 (2016).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Meyer, J. L. & Schultz, E. T. Tissue condition and growth rate of corals associated with schooling fish1. Limnol. Oceanogr. 30, 157–166 (1985).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Liberman, T., Genin, A. & Loya, Y. Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus. Mar. Biol. 121, 741–746 (1995).

    Article 

    Google Scholar 

  • 45.

    Burkepile, D. E. et al. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci. Rep. 3, 1493 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems https://doi.org/10.1007/s10021-019-00433-2 (2019).

    Article 

    Google Scholar 

  • 47.

    Ezzat, L., Maguer, J. F., Grover, R. & Ferrier-Pagés, C. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH4+ and NO3 supply. Proc. R. Soc. B Biol. Sci. 282, 20150610 (2015).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral–algal mutualism. Ecology 95, 1995–2005 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Devlin, M. J. & Brodie, J. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar. Pollut. Bull. 51, 9–22 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Bender, D., Diaz-Pulido, G. & Dove, S. The impact of CO 2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects. J. Phycol. 50, 203–215 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Wild, C., Woyt, H. & Huettel, M. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar. Ecol. Prog. Ser. 287, 87–98 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).

    Article 

    Google Scholar 

  • 53.

    Parsons, T. R., Maita, Y. & Lalli, C. M. A Manual of Chemical and Biological Methods for Seawater Analysis (Pergamon Press, 1984).

    Google Scholar 

  • 54.

    Chisholm, J. R. M. & Gattuso, J.-P. Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol. Oceanogr. 36, 1232–1239 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 55.

    Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G. & Gattuso, J. P. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. B Biol. Sci. 279, 1716–1723 (2012).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Whitaker, J. R. & Granum, P. E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal. Biochem. 109, 156–159 (1980).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Dunn, S. R., Thomas, M. C., Nette, G. W., Dove, S. G. & Blackburn, S. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within Cnidarian-Dinoflagellate symbiosis. PLoS ONE 7, e46801 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    van der Zande, R. M. et al. Paradise lost: end-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. Glob. Change Biol. 26, 2203–2219 (2020).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Gaffey, S. J. & Bronnimann, C. E. Effects of bleaching on organic and mineral phases in biogenic carbonates. J. Sediment. Res. 63, 752–754 (1993).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Underwood, A. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, 1997). .

  • 63.

    Wooldridge, S., Brodie, J. & Furnas, M. Exposure of inner-shelf reefs to nutrient enriched runoff entering the Great Barrier Reef Lagoon: post-European changes and the design of water quality targets. Mar. Pollut. Bull. 52, 1467–1479 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Ferrier-Pagès, C., Schoelzke, V., Jaubert, J., Muscatine, L. & Hoegh-Guldberg, O. Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. J. Exp. Mar. Bio. Ecol. 259, 249–261 (2001).

    Article 

    Google Scholar 

  • 65.

    Atkinson, M. J., Carlson, B. & Crow, G. L. Coral growth in high-nutrient, low-pH seawater: a case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14, 215–223 (1995).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Godinot, C., Ferrier-Pagès, C., Montagna, P. & Grover, R. Tissue and skeletal changes in the scleractinian coral Stylophora pistillata Esper 1797 under phosphate enrichment. J. Exp. Mar. Biol. Ecol. 409, 200–207 (2011).

    Article 

    Google Scholar 

  • 67.

    Dunn, J. G., Sammarco, P. W. & LaFleur, G. Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: a controlled experimental approach. J. Exp. Mar. Biol. Ecol. 411, 34–44 (2012).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Marshall, P. A. Skeletal damage in reef corals: relating resistance to colony morphology. Mar. Ecol. Prog. Ser. 200, 177–189 (2000).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: A solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).

    ADS 
    Article 

    Google Scholar 

  • 70.

    Marubini, F. & Thake, B. Bicarbonate addition promotes coral growth. Limnol. Oceanogr. 44, 716–720 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Bio. Ecol. 129, 279–303 (1989).

    Article 

    Google Scholar 

  • 72.

    Quinlan, Z. A. et al. Fluorescent organic exudates of corals and algae in tropical reefs are compositionally distinct and increase with nutrient enrichment. Limnol. Oceanogr. Lett. 3, 331–340 (2018).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Tanaka, Y., Grottoli, A., Matsui, Y., Suzuki, A. & Sakai, K. Effects of nitrate and phosphate availability on the tissues and carbonate skeleton of scleractinian corals. Mar. Ecol. Prog. Ser. 570, 101–112 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 74.

    Siboni, N., Ben-Dov, E., Sivan, A. & Kushmaro, A. Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ. Microbiol. 10, 2979–2990 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 76.

    Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio 4, e00052-e113 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Fong, C. R. & Fong, P. Nutrient fluctuations in marine systems: press versus pulse nutrient subsidies affect producer competition and diversity in estuaries and coral reefs. Estuaries Coasts 41, 421–429 (2018).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).

    ADS 
    Article 

    Google Scholar 

  • 80.

    Gil, M. A. Unity through nonlinearity: a unimodal coral–nutrient interaction. Ecology 94, 1871–1877 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    McAuley, P. J. & Smith, V. J. Effect of diel photoperiod on nitrogen metabolism of cultured and symbiotic zooxanthellae. Mar. Biol. 123, 145–152 (1995).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Bruggeman, F. J., Boogerd, F. C. & Westerhoff, H. V. The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica. FEBS J. 272, 1965–1985 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).

    Article 

    Google Scholar 

  • 84.

    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Grace Moore ’21 receives Michel David-Weill Scholarship

    Revisiting a quantum past for a fusion future