Haley, N. J. & Hoover, E. A. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).
Google Scholar
Hannaoui, S., Schatzl, H. M. & Gilch, S. Chronic wasting disease: emerging prions and their potential risk. PLoS Pathog. 13, e1006619 (2017).
Google Scholar
United States Geological Survey. Expanding Distribution of Chronic Wasting Disease. https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center_objects=0#qt-science_center_objects (2021).
Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 1–7 (2016).
Google Scholar
Gough, K. C. & Maddison, B. C. Prion transmission: prion excretion and occurrence in the environment. Prion 4, 275–282 (2010).
Google Scholar
Donaldson, D. S., Sehgal, A., Rios, D., Williams, I. R. & Mabbott, N. A. Increased abundance of m cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog. 12, e1006075 (2016).
Google Scholar
Press, C. M., Heggebø, R. & Espenes, A. Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Adv. Drug Deliv. Rev. 56, 885–899 (2004).
Google Scholar
Corr, S. C., Gahan, C. C. G. M. & Hill, C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52, 2–12 (2008).
Google Scholar
Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).
Google Scholar
Maignien, T., Lasmézas, C. I., Beringue, V., Dormont, D. & Deslys, J. P. Pathogenesis of the oral route of infection of mice with scrapie and bovine spongiform encephalopathy agents. J. Gen. Virol. 80(Pt 11), 3035–3042 (1999).
Google Scholar
Bennett, K. M. et al. Induction of colonic m cells during intestinal inflammation. Am. J. Pathol. 186, 1166–1179 (2016).
Google Scholar
Donaldson, D. S. & Mabbott, N. A. The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. J. Gen. Virol. 97, 1725–1738 (2016).
Google Scholar
Terahara, K. et al. Comprehensive gene expression profiling of peyer’s patch m cells, villous m-like cells, and intestinal epithelial cells. J. Immunol. 180, 7840–7846 (2008).
Google Scholar
Sigurdson, C. J. et al. Bacterial colitis increases susceptibility to oral prion disease. J. Infect. Dis. 199, 243–252 (2009).
Google Scholar
Tahoun, A. et al. Salmonella transforms follicle-associated epithelial cells into m cells to promote intestinal invasion. Cell Host Microb. 12, 645–656 (2012).
Google Scholar
Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).
Google Scholar
Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).
Google Scholar
Ogbonnaya, E. S. et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatr. 78, e7-9 (2015).
Google Scholar
Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U. S. A. 108, 3047–3052 (2011).
Google Scholar
Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).
Google Scholar
Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).
Google Scholar
Chu, Y. & Kordower, J. H. The prion hypothesis of Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 15, 28 (2015).
Google Scholar
Goedert, M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).
Google Scholar
Herva, M. E. & Spillantini, M. G. Parkinson’s disease as a member of prion-like disorders. Virus Res. 207, 38–46 (2015).
Google Scholar
Tan, J. M. M., Wong, E. S. P. & Lim, K.-L. Protein misfolding and aggregation in Parkinson’s disease. Antioxid. Redox Signal. 11, 2119–2134 (2009).
Google Scholar
Weickenmeier, J., Jucker, M., Goriely, A. & Kuhl, E. A physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. J. Mech. Phys. Solids 124, 264–281 (2019).
Google Scholar
Olanow, C. W. & Brundin, P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder?. Mov. Disord. 28, 31–40 (2013).
Google Scholar
D’Argenio, V. & Sarnataro, D. Microbiome influence in the pathogenesis of prion and Alzheimer’s diseases. Int. J. Mol. Sci. 20, 4704 (2019).
Google Scholar
Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).
Google Scholar
Rowin, J., Xia, Y., Jung, B. & Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep. 5, e13443 (2017).
Google Scholar
Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469-1480.e12 (2016).
Google Scholar
Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).
Google Scholar
Lev, M., Raine, C. S. & Levenson, S. M. Enhanced survival of germfree mice after infection with irradiated scrapie brain. Experientia 27, 1358–1359 (1971).
Google Scholar
Wade, W. F., Dees, C., German, T. L. & Marsh, R. F. Effect of bacterial flora and mouse genotype (euthymic or athymic) on scrapie pathogenesis. J. Leukoc. Biol. 40, 525–532 (1986).
Google Scholar
Bradford, B. M., Tetlow, L. & Mabbott, N. A. Prion disease pathogenesis in the absence of the commensal microbiota. J. Gen. Virol. 98, 1943–1952 (2017).
Google Scholar
Guan, Y. et al. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Express 7, 212 (2017).
Google Scholar
USDA APHIS|Cervids: Chronic Wasting Disease. https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-cwd/cervid-cwd (2020).
Keane, D. P. et al. Chronic wasting disease in a Wisconsin white-tailed deer farm. J. Vet. Diagn. Invest. 20, 698–703 (2008).
Google Scholar
Ethanol Precipitation Protocol—MRC Holland Technical Support. https://support.mrcholland.com/kb/articles/ethanol-precipitation-protocol.
Apprill, A. & Parada, A. E. 16S Illumina amplicon protocol: Earth microbiome project. http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/16s/.
Boylen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Yilmaz, P. et al. The SILVA and ‘all-species living tree project (LTP)’ taxonomic frameworks. Nucl. Acids Res. https://doi.org/10.1093/nar/gkt1209 (2014).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).
Google Scholar
Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
Google Scholar
Min, B. R., Gurung, N., Shange, R. & Solaiman, S. Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing. J. Anim. Sci. 97, 3523–3534 (2019).
Google Scholar
Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 11159 (2018).
Google Scholar
Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).
Google Scholar
Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
Google Scholar
Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin’s finches on Santa Cruz Island. Sci. Rep. 9, 18781 (2019).
Google Scholar
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
Google Scholar
Delgado, M. L. et al. Intestinal microbial community dynamics of white-tailed deer (Odocoileus virginianus) in an agroecosystem. Microb. Ecol. 74, 496–506 (2017).
Google Scholar
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).
Google Scholar
Rogers, L. L., Mooty, J. J. & Dawson, D. Foods of White-Tailed Deer in the Upper Great Lakes Region: A Review (North Central Forest Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1981).
Google Scholar
Gibson, K. M. et al. Gut microbiome differences between wild and captive black rhinoceros—implications for rhino health. Sci. Rep. 9, 7570 (2019).
Google Scholar
Guo, W. et al. Comparative study of gut microbiota in wild and captive giant pandas (Ailuropoda melanoleuca). Genes (Basel) 10, 827 (2019).
Google Scholar
Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys, Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).
Google Scholar
Prabhu, V. R., Wasimuddin, W., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: A comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).
Google Scholar
Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).
Google Scholar
Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).
Google Scholar
Khafipour, E. et al. Effects of grain feeding on microbiota in the digestive tract of cattle. Anim. Front. 6, 13–19 (2016).
Google Scholar
Liu, C. et al. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front. Microbiol. 10, 1116 (2019).
Google Scholar
Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
Google Scholar
Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).
Google Scholar
Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).
Google Scholar
Yang, X. et al. Seasonal breeding leads to changes for gut microbiota diversity in the wild ground squirrel (Spermophilus dauricus). https://www.researchsquare.com/article/rs-96089/v1 (2020). https://doi.org/10.21203/rs.3.rs-96089/v1.
Antwis, R. E., Edwards, K. L., Unwin, B., Walker, S. L. & Shultz, S. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. Microbiome 7, 27 (2019).
Google Scholar
Gordon, I. R. Controlled Reproduction in Horses, Deer, and Camelids (Cab International, 1997).
Samuel, M. D. & Storm, D. J. Chronic wasting disease in white-tailed deer: Infection, mortality, and implications for heterogeneous transmission. Ecology 97, 3195–3205 (2016).
Google Scholar
Miller, M. W., Hobbs, N. T. & Tavener, S. J. Dynamics of prion disease transmission in mule deer. Ecol. Appl. 16, 2208–2214 (2006).
Google Scholar
Gandy, K. A. O., Zhang, J., Nagarkatti, P. & Nagarkatti, M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci. Rep. 9, 1–17 (2019).
Google Scholar
Ebringer, A., Rashid, T., Wilson, C., Boden, R. & Thompson, E. A possible link between multiple sclerosis and Creutzfeldt-Jakob disease based on clinical, genetic, pathological and immunological evidence involving Acinetobacter bacteria. Med. Hypotheses 64, 487–494 (2005).
Google Scholar
Ricci, S. et al. Impact of supplemental winter feeding on ruminal microbiota of roe deer Capreolus capreolus. wbio 2019, 1–11 (2019).
Google Scholar
Sun, C.-H., Liu, H.-Y., Liu, B., Yuan, B.-D. & Lu, C.-H. Analysis of the gut microbiome of wild and captive Père David’s deer. Front. Microbiol. 10, 2331 (2019).
Google Scholar
Barichella, M. et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 34, 396–405 (2019).
Google Scholar
Pietrucci, D. et al. Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat. Disord. 65, 124–130 (2019).
Google Scholar
Radisavljevic, N., Cirstea, M. & Brett Finlay, B. Bottoms up: The role of gut microbiota in brain health. Environ. Microbiol https://doi.org/10.1111/1462-2920.14506 (2018).
Google Scholar
Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 11450 (2017).
Google Scholar
Vacca, M. et al. The controversial role of human gut Lachnospiraceae. Microorganisms 8, 573 (2020).
Google Scholar
Zeng, H., Ishaq, S. L., Zhao, F.-Q. & Wright, A.-D.G. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J. Nutr. Biochem. 35, 30–36 (2016).
Google Scholar
Zhang, T., Li, Q., Cheng, L., Buch, H. & Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 12, 1109–1125 (2019).
Google Scholar
Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J. Funct. Foods 33, 194–201 (2017).
Google Scholar
Ou, Z. et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes 10, 1–10 (2020).
Google Scholar
Cirstea, M., Radisavljevic, N. & Finlay, B. B. Good bug, bad bug: Breaking through microbial stereotypes. Cell Host Microb. 23, 10–13 (2018).
Google Scholar
Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. PNAS 114, 10719–10724 (2017).
Google Scholar
Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. PNAS 114, 10713–10718 (2017).
Google Scholar
Heintz-Buschart, A. et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98 (2018).
Google Scholar
Hill-Burns, E. M. et al. Parkinson’s disease and PD medications have distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749 (2017).
Google Scholar
Belzer, C. & de Vos, W. M. Microbes inside—from diversity to function: The case of Akkermansia. ISME J. 6, 1449–1458 (2012).
Google Scholar
Donaldson, D. S., Pollock, J., Vohra, P., Stevens, M. P. & Mabbott, N. A. Microbial stimulation reverses the age-related decline in M cells in aged mice. iScience 23, 101147 (2020).
Google Scholar
Ganesh, B. P., Klopfleisch, R., Loh, G. & Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE 8, e74963 (2013).
Google Scholar
Donaldson, D. S. et al. M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 5, 216–225 (2012).
Google Scholar
Derrien, M., Belzer, C. & de Vos, W. M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 106, 171–181 (2017).
Google Scholar
Nagalingam, N. A., Kao, J. Y. & Young, V. B. Microbial ecology of the murine gut associated with the development of DSS-colitis. Inflamm. Bowel Dis. 17, 917–926 (2011).
Google Scholar
Haley, N. J. et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS ONE 14, e0224342 (2019).
Google Scholar
Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
Google Scholar
Wagner Mackenzie, B., Waite, D. W. & Taylor, M. W. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front. Microbiol. 6, 130 (2015).
Google Scholar
Kawada, Y., Naito, Y., Andoh, A., Ozeki, M. & Inoue, R. Effect of storage and DNA extraction method on 16S rRNA-profiled fecal microbiota in Japanese adults. J. Clin. Biochem. Nutr. 64, 106–111 (2019).
Google Scholar
Sinha, R. et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomark. Prev. 25, 407–416 (2016).
Google Scholar
Source: Ecology - nature.com