in

Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island)

  • 1.

    deMenocal, P. B. & Stringer, C. Climate and the peopling of the world. Nature 538, 49–50 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Pisor, A. C. & Jones, J. H. Human adaptation to climate change: an introduction to the special issue. Am. J. Hum. Biol. n/a, e23530 (2020).

  • 3.

    Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the Age of Humans. PNAS 117, 8250–8253 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Shennan, S. & Sear, R. Archaeology, demography and life history theory together can help us explain past and present population patterns. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190711 (2021).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evolution 5, 273–284 (2021).

    Article 

    Google Scholar 

  • 6.

    Bocquet‐Appel, J. Recent Advances in Paleodemography (Springer, Dordrecht, 2008).

  • 7.

    Chamberlain, A. T. Demography in Archaeology (Cambridge University Press, 2006).

  • 8.

    Drennan, R. D., Berrey, C. A. & Peterson, C. E. Regional Settlement Demography in Archaeology (Eliot Werner Publications, 2015).

  • 9.

    Kintigh, K. W. et al. Grand challenges for archaeology. PNAS 111, 879–880 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Bocquet‐Appel, J. Paleoanthropological traces of a neolithic demographic transition. Curr. Anthropol. 43, 637–650 (2002).

    Article 

    Google Scholar 

  • 11.

    Crema, E. R. & Kobayashi, K. A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates. J. Archaeol. Sci. 117, 105136 (2020).

    Article 

    Google Scholar 

  • 12.

    Schmidt, I. et al. Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190714 (2021).

    Article 

    Google Scholar 

  • 13.

    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    White, A. J. et al. An evaluation of fecal stanols as indicators of population change at Cahokia, Illinois. J. Archaeol. Sci. 93, 129–134 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 1–8 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).

    Article 

    Google Scholar 

  • 17.

    Crema, E. R., Habu, J., Kobayashi, K. & Madella, M. Summed probability distribution of 14 C dates suggests regional divergences in the population dynamics of the jomon period in Eastern Japan. PLoS ONE 11, e0154809 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Chaput, M. A. & Gajewski, K. Radiocarbon dates as estimates of ancient human population size. Anthropocene 15, 3–12 (2016).

    Article 

    Google Scholar 

  • 20.

    Carleton, W. C. Evaluating Bayesian Radiocarbon‐dated Event Count (REC) models for the study of long‐term human and environmental processes. Journal of Quaternary Science 36, 110–123 (2021).

  • 21.

    Brown, W. A. The past and future of growth rate estimation in demographic temporal frequency analysis: Biodemographic interpretability and the ascendance of dynamic growth models. J. Archaeol. Sci. 80, 96–108 (2017).

    Article 

    Google Scholar 

  • 22.

    Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 0959683620981700. https://doi.org/10.1177/0959683620981700 (2020).

  • 23.

    Crema, E. R. & Bevan, A. Inference from large sets of radiocarbon dates: software and methods. Radiocarbon 63, 23–39 (2021).

    Article 

    Google Scholar 

  • 24.

    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).

    Article 

    Google Scholar 

  • 25.

    Ward, I. & Larcombe, P. Sedimentary unknowns constrain the current use of frequency analysis of radiocarbon data sets in forming regional models of demographic change. Geoarchaeology 36, 546–570 (2021).

    Article 

    Google Scholar 

  • 26.

    de Souza, J. G. & Riris, P. Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. J. Archaeol. Sci. 125, 105293 (2021).

    Article 

    Google Scholar 

  • 27.

    Fernández-López de Pablo, J. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232–235 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Lima, M. et al. Ecology of the collapse of Rapa Nui society. Proc. R. Soc. B: Biol. Sci. 287, 20200662 (2020).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Prates, L., Politis, G. G. & Perez, S. I. Rapid radiation of humans in South America after the last glacial maximum: a radiocarbon-based study. PLoS ONE 15, e0236023 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Riris, P. Dates as data revisited: a statistical examination of the Peruvian preceramic radiocarbon record. J. Archaeol. Sci. 97, 67–76 (2018).

    Article 

    Google Scholar 

  • 32.

    Riris, P. & Arroyo-Kalin, M. Widespread population decline in South America correlates with mid-Holocene climate change. Sci. Rep. 9, 6850 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Crema, E. R. & Shoda, S. A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates: A case study on the Jomon-Yayoi transition in Kyushu (Japan). PLOS ONE 16, e0251695 (2021).

  • 34.

    Timpson, A., Barberena, R., Thomas, M. G., Méndez, C. & Manning, K. Directly modelling population dynamics in the South American Arid Diagonal using 14 C dates. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190723 (2021).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Bernabeu Aubán, J., García Puchol, O., Barton, M., McClure, S. & Pardo Gordó, S. Radiocarbon dates, climatic events, and social dynamics during the Early Neolithic in Mediterranean Iberia. Quat. Int. 403, 201–210 (2016).

    Article 

    Google Scholar 

  • 36.

    Bevan, A. et al. Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proc. Natl Acad. Sci. USA 114, E10524–E10531 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Bird, D. et al. A first empirical analysis of population stability in North America using radiocarbon records. Holocene 30, 1345–1359 (2020).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Capuzzo, G., Zanon, M., Corso, M. D., Kirleis, W. & Barceló, J. A. Highly diverse Bronze Age population dynamics in Central-Southern Europe and their response to regional climatic patterns. PLoS ONE 13, e0200709 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Jørgensen, E. K. The palaeodemographic and environmental dynamics of prehistoric Arctic Norway: an overview of human-climate covariation. Quat. Int. 549, 36–51 (2020).

    Article 

    Google Scholar 

  • 41.

    Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. PNAS 110, 443–447 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Roberts, N. et al. Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean. Quat. Sci. Rev. 184, 47–67 (2018).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Wang, C., Lu, H., Zhang, J., Gu, Z. & He, K. Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years. Quat. Sci. Rev. 98, 45–59 (2014).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Warden, L. et al. Climate induced human demographic and cultural change in northern Europe during the mid-Holocene. Sci. Rep. 7, 15251 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Weninger, B., Clare, L., Jöris, O., Jung, R. & Edinborough, K. Quantum theory of radiocarbon calibration. World Archaeol. 47, 543–566 (2015).

    Article 

    Google Scholar 

  • 47.

    Weninger, B. & Edinborough, K. Bayesian 14C-rationality, Heisenberg uncertainty, and Fourier Transform: the beauty of radiocarbon calibration. Doc. Praehist. 47, 536–559 (2020).

    Article 

    Google Scholar 

  • 48.

    Tavaré, S., Balding, D. J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population. Genet. Genet. 162, 2025–2035 (2002).

    Google Scholar 

  • 50.

    Carrignon, S., Brughmans, T. & Romanowska, I. Tableware trade in the Roman East: exploring cultural and economic transmission with agent-based modelling and approximate Bayesian computation. PLoS ONE 15, e0240414 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Crema, E. R., Edinborough, K., Kerig, T. & Shennan, S. J. An approximate Bayesian computation approach for inferring patterns of cultural evolutionary change. J. Archaeol. Sci. 50, 160–170 (2014).

    Article 

    Google Scholar 

  • 52.

    Crema, E. R., Kandler, A. & Shennan, S. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions. Sci. Rep. 6, 39122 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Rubio-Campillo, X. Model selection in historical research using approximate Bayesian computation. PLoS ONE 11, e0146491 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Tsutaya, T., Shimomi, A., Fujisawa, S., Katayama, K. & Yoneda, M. Isotopic evidence of breastfeeding and weaning practices in a hunter–gatherer population during the Late/Final Jomon period in eastern Japan. J. Archaeol. Sci. 76, 70–78 (2016).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Porčić, M. & Nikolić, M. The Approximate Bayesian Computation approach to reconstructing population dynamics and size from settlement data: demography of the Mesolithic-Neolithic transition at Lepenski Vir. Archaeol. Anthropol. Sci. 1–18. https://doi.org/10.1007/s12520-014-0223-2 (2015).

  • 56.

    Porčić, M., Blagojević, T., Pendić, J. & Stefanović, S. The Neolithic Demographic Transition in the Central Balkans: population dynamics reconstruction based on new radiocarbon evidence. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190712 (2021).

    Article 
    CAS 

    Google Scholar 

  • 57.

    DiNapoli, R. J., Rieth, T. M., Lipo, C. P. & Hunt, T. L. A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island). J. Archaeol. Sci. 116, 105094 (2020).

    Article 

    Google Scholar 

  • 58.

    Hunt, T. L. & Lipo, C. The Archaeology of Rapa Nui (Easter Island). in The Oxford Handbook of Prehistoric Oceania (eds. Cochrane, E. E. & Hunt, T. L.) 416–449 (Oxford University Press, 2018).

  • 59.

    Kirch, P. V. The Evolution of Polynesian Chiefdoms (Cambridge University Press, 1984).

  • 60.

    Ponting, C. A Green History of the World: The Environment and the Collapse of Great Civilizations. (St. Martin’s Press, 1991).

  • 61.

    Boersema, J. J. The Survival of Easter Island: Dwindling Resources and Cultural Resilience (Cambridge University Press, 2015).

  • 62.

    Boersema, J. J. An earthly paradise? Easter Island (Rapa Nui) as seen by the eighteenth-century European explorers. in Cultural and Environmental Change on Rapa Nui (eds. Haoa Cardinali, S. et al.) 157–178 (Routledge, 2018).

  • 63.

    Boersema, J. J. & Huele, R. Pondering the population numbers of Easter Island’s Past. in Easter Island and the Pacific: Cultural and Environmental Dynamics. In Proc 9th International Conference on Easter Island and the Pacific, Held in the Ethnological Museum, Berlin, Germany (eds. Vogt, B. et al.) 83–92 (Rapa Nui Press, 2019).

  • 64.

    Puleston, C. O. et al. Rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 5, 1–14 (2017).

    Article 

    Google Scholar 

  • 65.

    Lipo, C. P., DiNapoli, R. J. & Hunt, T. L. Commentary: rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 25, 1–3 (2018).

  • 66.

    Hunt, T. L. Rethinking Easter Island’s ecological catastrophe. J. Archaeol. Sci. 34, 485–502 (2007).

    Article 

    Google Scholar 

  • 67.

    Rull, V. The deforestation of Easter Island. Biol. Rev. 95, 124–141 (2020).

    Article 

    Google Scholar 

  • 68.

    Brandt, G. & Merico, A. The slow demise of Easter Island: insights from a modeling investigation. Front. Ecol. Evol. 13, 1–12 (2015).

  • 69.

    Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Viking, 2005).

  • 70.

    Bahn, P. & Flenley, J. Easter Island, Earth Island: the Enigmas of Rapa Nui (Rowman & Littlefield, 2017).

  • 71.

    Rull, V. Natural and anthropogenic drivers of cultural change on Easter Island: review and new insights. Quat. Sci. Rev. 150, 31–41 (2016).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Cañellas-Boltà, N. et al. Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments. Quat. Sci. Rev. 72, 36–48 (2013).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Rull, V. Drought, freshwater availability and cultural resilience on Easter Island (SE Pacific) during the Little Ice Age. Holocene. https://doi.org/10.1177/0959683619895587 (2020).

  • 74.

    Yan, H. et al. A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat. Geosci. 4, 611–614 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 75.

    Mulrooney, M. A. An island-wide assessment of the chronology of settlement and land use on Rapa Nui (Easter Island) based on radiocarbon data. J. Archaeol. Sci. 40, 4377–4399 (2013).

    Article 

    Google Scholar 

  • 76.

    Stevenson, C. M. et al. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact. Proc. Natl Acad. Sci. USA 112, 1025–1030 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. Revisiting warfare, monument destruction, and the ‘Huri Moai’ phase in Rapa Nui (Easter Island) culture history. Journal of Pacific Archaeology 12, 1–24 (2021).

  • 78.

    Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 Years cal BP. Radiocarbon 62, 759–778 (2020).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Bork, H.-R., Mieth, A. & Tschochner, B. Nothing but stones? A review of the extent and technical efforts of prehistoric stone mulching on Rapa Nui. Rapa Nui J. 18, 10–14 (2004).

    Google Scholar 

  • 81.

    Ladefoged, T. N. et al. Soil nutrient analysis of Rapa Nui gardening. Archaeol. Ocean. 45, 80–85 (2010).

    Article 

    Google Scholar 

  • 82.

    Ladefoged, T. N., Flaws, A. & Stevenson, C. M. The distribution of rock gardens on Rapa Nui (Easter Island) as determined from satellite imagery. J. Archaeol. Sci. 40, 1203–1212 (2013).

    Article 

    Google Scholar 

  • 83.

    Mieth, A. & Bork, H. R. History, origin and extent of soil erosion on Easter Island (Rapa Nui). Catena 63, 244–260 (2005).

    Article 

    Google Scholar 

  • 84.

    Stevenson, C. M., Jackson, T. L., Mieth, A., Bork, H.-R. & Ladefoged, T. N. Prehistoric and early historic agriculture at Maunga Orito, Easter Island (Rapa Nui), Chile. Antiquity 80, 919–936 (2006).

    Article 

    Google Scholar 

  • 85.

    Wozniak, J. A. Subsistence strategies on Rapa Nui (Easter Island): prehistoric gardening practices on Rapa Nui and how they relate to current farming practices. in Cultural and Environmental Change on Rapa Nui (eds. Haoa-Cardinali, S. et al.) 87–112 (Routledge, 2018).

  • 86.

    Tromp, M. & Dudgeon, J. V. Differentiating dietary and non-dietary microfossils extracted from human dental calculus: the importance of sweet potato to ancient diet on Rapa Nui. J. Archaeol. Sci. 54, 54–63 (2015).

    Article 

    Google Scholar 

  • 87.

    Brosnan, T., Becker, M. W. & Lipo, C. P. Coastal groundwater discharge and the ancient inhabitants of Rapa Nui (Easter Island), Chile. Hydrogeol. J. 27, 519–534 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 88.

    DiNapoli, R. J. et al. Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources. PLoS ONE 14, e0210409 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Hixon, S., DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. The ethnohistory of freshwater use on Rapa Nui (Easter Island, Chile). J. Polynesian Soc. 128, 163–189 (2019).

    Article 

    Google Scholar 

  • 90.

    Brown, A. A. & Crema, E. R. Māori population growth in pre-contact New Zealand: regional population dynamics inferred from summed probability distributions of radiocarbon dates. J. Isl. Coast. Archaeol. 0, 1–19 (2019).

    Google Scholar 

  • 91.

    McFadden, C., Walter, R., Buckley, H. & Oxenham, M. F. Temporal trends in the Colonisation of the Pacific: Palaeodemographic Insights. J. World Prehist. https://doi.org/10.1007/s10963-021-09152-w (2021).

    Article 

    Google Scholar 

  • 92.

    Kirch, P. V. & Rallu, J.-L. The Growth and Collapse of Pacific Island Societies: Archaeological and Demographic Perspectives. (University of Hawai’i Press, 2007).

  • 93.

    Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Sherwood, S. C. et al. New excavations in Easter Island’s statue quarry: Soil fertility, site formation and chronology. J. Archaeological Sci. 111, 104994 (2019).

    Article 

    Google Scholar 

  • 95.

    Simpson, D. F. Jr. & Dussubieux, L. A collapsed narrative? Geochemistry and spatial distribution of basalt quarries and fine–grained artifacts reveal communal use of stone on Rapa Nui (Easter Island). J. Archaeol. Sci.: Rep. 18, 370–385 (2018).

    Google Scholar 

  • 96.

    Bevan, A. & Crema, E. R. Modifiable reporting unit problems and time series of long-term human activity. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190726 (2021).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Davies, B., Holdaway, S. J. & Fanning, P. C. Modelling the palimpsest: an exploratory agent-based model of surface archaeological deposit formation in a fluvial arid Australian landscape. Holocene 26, 450–463 (2016).

    ADS 
    Article 

    Google Scholar 

  • 98.

    Commendador, A. S., Dudgeon, J. V., Fuller, B. T. & Finney, B. P. Radiocarbon dating human skeletal material on Rapa Nui: evaluating the effect of uncertainty in marine-derived carbon. Radiocarbon 56, 277–294 (2014).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Stevenson, C. M., Williams, C., Carpenter, E., Hunt, C. S. & Novak, S. W. Architecturally modified caves on Rapa Nui: post-European contact ritual spaces? Rapa Nui J. 32, 1–36 (2019).

    Article 

    Google Scholar 

  • 100.

    Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    CAS 
    Article 

    Google Scholar 

  • 101.

    Beck, J. W., Hewitt, L., Burr, G. S., Loret, J. & Hochstetter, F. T. Mata ki te rangi: eyes towards the heavens. in Easter Island: Scientific Exploration Into the World’s Environmental Problems in Microcosm (eds. Loret, J. & Tanacredi, J. T.) 93–112 (Kluwer Academic/Plenum Publishers, 2003).

  • 102.

    Burr, G. S. et al. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51, 319–335 (2009).

    CAS 
    Article 

    Google Scholar 

  • 103.

    DiNapoli, R. J. et al. Marine reservoir corrections for the Caribbean demonstrate high intra- and inter-island variability in local reservoir offsets. Quat. Geochronol. 61, 101126 (2021).

    Article 

    Google Scholar 

  • 104.

    Surovell, T. A., Byrd Finley, J., Smith, G. M., Brantingham, P. J. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).

    Article 

    Google Scholar 

  • 105.

    Sunnåker, M. et al. Approximate Bayesian computation. PLoS Comput. Biol. 9, e1002803 (2013).

    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 106.

    Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 107.

    Rick, J. W. Dates as data: an examination of the peruvian preceramic radiocarbon record. Am. Antiquity 52, 55–73 (1987).

    Article 

    Google Scholar 

  • 108.

    R Core Team. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Revisiting a quantum past for a fusion future

    From NYC zookeeper to aspiring architect