deMenocal, P. B. & Stringer, C. Climate and the peopling of the world. Nature 538, 49–50 (2016).
Google Scholar
Pisor, A. C. & Jones, J. H. Human adaptation to climate change: an introduction to the special issue. Am. J. Hum. Biol. n/a, e23530 (2020).
Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the Age of Humans. PNAS 117, 8250–8253 (2020).
Google Scholar
Shennan, S. & Sear, R. Archaeology, demography and life history theory together can help us explain past and present population patterns. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190711 (2021).
Google Scholar
Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evolution 5, 273–284 (2021).
Google Scholar
Bocquet‐Appel, J. Recent Advances in Paleodemography (Springer, Dordrecht, 2008).
Chamberlain, A. T. Demography in Archaeology (Cambridge University Press, 2006).
Drennan, R. D., Berrey, C. A. & Peterson, C. E. Regional Settlement Demography in Archaeology (Eliot Werner Publications, 2015).
Kintigh, K. W. et al. Grand challenges for archaeology. PNAS 111, 879–880 (2014).
Google Scholar
Bocquet‐Appel, J. Paleoanthropological traces of a neolithic demographic transition. Curr. Anthropol. 43, 637–650 (2002).
Google Scholar
Crema, E. R. & Kobayashi, K. A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates. J. Archaeol. Sci. 117, 105136 (2020).
Google Scholar
Schmidt, I. et al. Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190714 (2021).
Google Scholar
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).
Google Scholar
White, A. J. et al. An evaluation of fecal stanols as indicators of population change at Cahokia, Illinois. J. Archaeol. Sci. 93, 129–134 (2018).
Google Scholar
Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 1–8 (2013).
Google Scholar
Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).
Google Scholar
Crema, E. R., Habu, J., Kobayashi, K. & Madella, M. Summed probability distribution of 14 C dates suggests regional divergences in the population dynamics of the jomon period in Eastern Japan. PLoS ONE 11, e0154809 (2016).
Google Scholar
Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).
Google Scholar
Chaput, M. A. & Gajewski, K. Radiocarbon dates as estimates of ancient human population size. Anthropocene 15, 3–12 (2016).
Google Scholar
Carleton, W. C. Evaluating Bayesian Radiocarbon‐dated Event Count (REC) models for the study of long‐term human and environmental processes. Journal of Quaternary Science 36, 110–123 (2021).
Brown, W. A. The past and future of growth rate estimation in demographic temporal frequency analysis: Biodemographic interpretability and the ascendance of dynamic growth models. J. Archaeol. Sci. 80, 96–108 (2017).
Google Scholar
Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 0959683620981700. https://doi.org/10.1177/0959683620981700 (2020).
Crema, E. R. & Bevan, A. Inference from large sets of radiocarbon dates: software and methods. Radiocarbon 63, 23–39 (2021).
Google Scholar
Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).
Google Scholar
Ward, I. & Larcombe, P. Sedimentary unknowns constrain the current use of frequency analysis of radiocarbon data sets in forming regional models of demographic change. Geoarchaeology 36, 546–570 (2021).
Google Scholar
de Souza, J. G. & Riris, P. Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. J. Archaeol. Sci. 125, 105293 (2021).
Google Scholar
Fernández-López de Pablo, J. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).
Google Scholar
Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232–235 (2016).
Google Scholar
Lima, M. et al. Ecology of the collapse of Rapa Nui society. Proc. R. Soc. B: Biol. Sci. 287, 20200662 (2020).
Google Scholar
Prates, L., Politis, G. G. & Perez, S. I. Rapid radiation of humans in South America after the last glacial maximum: a radiocarbon-based study. PLoS ONE 15, e0236023 (2020).
Google Scholar
Riris, P. Dates as data revisited: a statistical examination of the Peruvian preceramic radiocarbon record. J. Archaeol. Sci. 97, 67–76 (2018).
Google Scholar
Riris, P. & Arroyo-Kalin, M. Widespread population decline in South America correlates with mid-Holocene climate change. Sci. Rep. 9, 6850 (2019).
Google Scholar
Crema, E. R. & Shoda, S. A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates: A case study on the Jomon-Yayoi transition in Kyushu (Japan). PLOS ONE 16, e0251695 (2021).
Timpson, A., Barberena, R., Thomas, M. G., Méndez, C. & Manning, K. Directly modelling population dynamics in the South American Arid Diagonal using 14 C dates. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190723 (2021).
Google Scholar
Bernabeu Aubán, J., García Puchol, O., Barton, M., McClure, S. & Pardo Gordó, S. Radiocarbon dates, climatic events, and social dynamics during the Early Neolithic in Mediterranean Iberia. Quat. Int. 403, 201–210 (2016).
Google Scholar
Bevan, A. et al. Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proc. Natl Acad. Sci. USA 114, E10524–E10531 (2017).
Google Scholar
Bird, D. et al. A first empirical analysis of population stability in North America using radiocarbon records. Holocene 30, 1345–1359 (2020).
Google Scholar
Capuzzo, G., Zanon, M., Corso, M. D., Kirleis, W. & Barceló, J. A. Highly diverse Bronze Age population dynamics in Central-Southern Europe and their response to regional climatic patterns. PLoS ONE 13, e0200709 (2018).
Google Scholar
de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).
Google Scholar
Jørgensen, E. K. The palaeodemographic and environmental dynamics of prehistoric Arctic Norway: an overview of human-climate covariation. Quat. Int. 549, 36–51 (2020).
Google Scholar
Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. PNAS 110, 443–447 (2013).
Google Scholar
Roberts, N. et al. Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean. Quat. Sci. Rev. 184, 47–67 (2018).
Google Scholar
Wang, C., Lu, H., Zhang, J., Gu, Z. & He, K. Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years. Quat. Sci. Rev. 98, 45–59 (2014).
Google Scholar
Warden, L. et al. Climate induced human demographic and cultural change in northern Europe during the mid-Holocene. Sci. Rep. 7, 15251 (2017).
Google Scholar
Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).
Google Scholar
Weninger, B., Clare, L., Jöris, O., Jung, R. & Edinborough, K. Quantum theory of radiocarbon calibration. World Archaeol. 47, 543–566 (2015).
Google Scholar
Weninger, B. & Edinborough, K. Bayesian 14C-rationality, Heisenberg uncertainty, and Fourier Transform: the beauty of radiocarbon calibration. Doc. Praehist. 47, 536–559 (2020).
Google Scholar
Tavaré, S., Balding, D. J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997).
Google Scholar
Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population. Genet. Genet. 162, 2025–2035 (2002).
Carrignon, S., Brughmans, T. & Romanowska, I. Tableware trade in the Roman East: exploring cultural and economic transmission with agent-based modelling and approximate Bayesian computation. PLoS ONE 15, e0240414 (2020).
Google Scholar
Crema, E. R., Edinborough, K., Kerig, T. & Shennan, S. J. An approximate Bayesian computation approach for inferring patterns of cultural evolutionary change. J. Archaeol. Sci. 50, 160–170 (2014).
Google Scholar
Crema, E. R., Kandler, A. & Shennan, S. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions. Sci. Rep. 6, 39122 (2016).
Google Scholar
Rubio-Campillo, X. Model selection in historical research using approximate Bayesian computation. PLoS ONE 11, e0146491 (2016).
Google Scholar
Tsutaya, T., Shimomi, A., Fujisawa, S., Katayama, K. & Yoneda, M. Isotopic evidence of breastfeeding and weaning practices in a hunter–gatherer population during the Late/Final Jomon period in eastern Japan. J. Archaeol. Sci. 76, 70–78 (2016).
Google Scholar
Porčić, M. & Nikolić, M. The Approximate Bayesian Computation approach to reconstructing population dynamics and size from settlement data: demography of the Mesolithic-Neolithic transition at Lepenski Vir. Archaeol. Anthropol. Sci. 1–18. https://doi.org/10.1007/s12520-014-0223-2 (2015).
Porčić, M., Blagojević, T., Pendić, J. & Stefanović, S. The Neolithic Demographic Transition in the Central Balkans: population dynamics reconstruction based on new radiocarbon evidence. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190712 (2021).
Google Scholar
DiNapoli, R. J., Rieth, T. M., Lipo, C. P. & Hunt, T. L. A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island). J. Archaeol. Sci. 116, 105094 (2020).
Google Scholar
Hunt, T. L. & Lipo, C. The Archaeology of Rapa Nui (Easter Island). in The Oxford Handbook of Prehistoric Oceania (eds. Cochrane, E. E. & Hunt, T. L.) 416–449 (Oxford University Press, 2018).
Kirch, P. V. The Evolution of Polynesian Chiefdoms (Cambridge University Press, 1984).
Ponting, C. A Green History of the World: The Environment and the Collapse of Great Civilizations. (St. Martin’s Press, 1991).
Boersema, J. J. The Survival of Easter Island: Dwindling Resources and Cultural Resilience (Cambridge University Press, 2015).
Boersema, J. J. An earthly paradise? Easter Island (Rapa Nui) as seen by the eighteenth-century European explorers. in Cultural and Environmental Change on Rapa Nui (eds. Haoa Cardinali, S. et al.) 157–178 (Routledge, 2018).
Boersema, J. J. & Huele, R. Pondering the population numbers of Easter Island’s Past. in Easter Island and the Pacific: Cultural and Environmental Dynamics. In Proc 9th International Conference on Easter Island and the Pacific, Held in the Ethnological Museum, Berlin, Germany (eds. Vogt, B. et al.) 83–92 (Rapa Nui Press, 2019).
Puleston, C. O. et al. Rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 5, 1–14 (2017).
Google Scholar
Lipo, C. P., DiNapoli, R. J. & Hunt, T. L. Commentary: rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 25, 1–3 (2018).
Hunt, T. L. Rethinking Easter Island’s ecological catastrophe. J. Archaeol. Sci. 34, 485–502 (2007).
Google Scholar
Rull, V. The deforestation of Easter Island. Biol. Rev. 95, 124–141 (2020).
Google Scholar
Brandt, G. & Merico, A. The slow demise of Easter Island: insights from a modeling investigation. Front. Ecol. Evol. 13, 1–12 (2015).
Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Viking, 2005).
Bahn, P. & Flenley, J. Easter Island, Earth Island: the Enigmas of Rapa Nui (Rowman & Littlefield, 2017).
Rull, V. Natural and anthropogenic drivers of cultural change on Easter Island: review and new insights. Quat. Sci. Rev. 150, 31–41 (2016).
Google Scholar
Cañellas-Boltà, N. et al. Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments. Quat. Sci. Rev. 72, 36–48 (2013).
Google Scholar
Rull, V. Drought, freshwater availability and cultural resilience on Easter Island (SE Pacific) during the Little Ice Age. Holocene. https://doi.org/10.1177/0959683619895587 (2020).
Yan, H. et al. A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat. Geosci. 4, 611–614 (2011).
Google Scholar
Mulrooney, M. A. An island-wide assessment of the chronology of settlement and land use on Rapa Nui (Easter Island) based on radiocarbon data. J. Archaeol. Sci. 40, 4377–4399 (2013).
Google Scholar
Stevenson, C. M. et al. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact. Proc. Natl Acad. Sci. USA 112, 1025–1030 (2015).
Google Scholar
DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. Revisiting warfare, monument destruction, and the ‘Huri Moai’ phase in Rapa Nui (Easter Island) culture history. Journal of Pacific Archaeology 12, 1–24 (2021).
Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).
Google Scholar
Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 Years cal BP. Radiocarbon 62, 759–778 (2020).
Google Scholar
Bork, H.-R., Mieth, A. & Tschochner, B. Nothing but stones? A review of the extent and technical efforts of prehistoric stone mulching on Rapa Nui. Rapa Nui J. 18, 10–14 (2004).
Ladefoged, T. N. et al. Soil nutrient analysis of Rapa Nui gardening. Archaeol. Ocean. 45, 80–85 (2010).
Google Scholar
Ladefoged, T. N., Flaws, A. & Stevenson, C. M. The distribution of rock gardens on Rapa Nui (Easter Island) as determined from satellite imagery. J. Archaeol. Sci. 40, 1203–1212 (2013).
Google Scholar
Mieth, A. & Bork, H. R. History, origin and extent of soil erosion on Easter Island (Rapa Nui). Catena 63, 244–260 (2005).
Google Scholar
Stevenson, C. M., Jackson, T. L., Mieth, A., Bork, H.-R. & Ladefoged, T. N. Prehistoric and early historic agriculture at Maunga Orito, Easter Island (Rapa Nui), Chile. Antiquity 80, 919–936 (2006).
Google Scholar
Wozniak, J. A. Subsistence strategies on Rapa Nui (Easter Island): prehistoric gardening practices on Rapa Nui and how they relate to current farming practices. in Cultural and Environmental Change on Rapa Nui (eds. Haoa-Cardinali, S. et al.) 87–112 (Routledge, 2018).
Tromp, M. & Dudgeon, J. V. Differentiating dietary and non-dietary microfossils extracted from human dental calculus: the importance of sweet potato to ancient diet on Rapa Nui. J. Archaeol. Sci. 54, 54–63 (2015).
Google Scholar
Brosnan, T., Becker, M. W. & Lipo, C. P. Coastal groundwater discharge and the ancient inhabitants of Rapa Nui (Easter Island), Chile. Hydrogeol. J. 27, 519–534 (2019).
Google Scholar
DiNapoli, R. J. et al. Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources. PLoS ONE 14, e0210409 (2019).
Google Scholar
Hixon, S., DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. The ethnohistory of freshwater use on Rapa Nui (Easter Island, Chile). J. Polynesian Soc. 128, 163–189 (2019).
Google Scholar
Brown, A. A. & Crema, E. R. Māori population growth in pre-contact New Zealand: regional population dynamics inferred from summed probability distributions of radiocarbon dates. J. Isl. Coast. Archaeol. 0, 1–19 (2019).
McFadden, C., Walter, R., Buckley, H. & Oxenham, M. F. Temporal trends in the Colonisation of the Pacific: Palaeodemographic Insights. J. World Prehist. https://doi.org/10.1007/s10963-021-09152-w (2021).
Google Scholar
Kirch, P. V. & Rallu, J.-L. The Growth and Collapse of Pacific Island Societies: Archaeological and Demographic Perspectives. (University of Hawai’i Press, 2007).
Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361 (2017).
Google Scholar
Sherwood, S. C. et al. New excavations in Easter Island’s statue quarry: Soil fertility, site formation and chronology. J. Archaeological Sci. 111, 104994 (2019).
Google Scholar
Simpson, D. F. Jr. & Dussubieux, L. A collapsed narrative? Geochemistry and spatial distribution of basalt quarries and fine–grained artifacts reveal communal use of stone on Rapa Nui (Easter Island). J. Archaeol. Sci.: Rep. 18, 370–385 (2018).
Bevan, A. & Crema, E. R. Modifiable reporting unit problems and time series of long-term human activity. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190726 (2021).
Google Scholar
Davies, B., Holdaway, S. J. & Fanning, P. C. Modelling the palimpsest: an exploratory agent-based model of surface archaeological deposit formation in a fluvial arid Australian landscape. Holocene 26, 450–463 (2016).
Google Scholar
Commendador, A. S., Dudgeon, J. V., Fuller, B. T. & Finney, B. P. Radiocarbon dating human skeletal material on Rapa Nui: evaluating the effect of uncertainty in marine-derived carbon. Radiocarbon 56, 277–294 (2014).
Google Scholar
Stevenson, C. M., Williams, C., Carpenter, E., Hunt, C. S. & Novak, S. W. Architecturally modified caves on Rapa Nui: post-European contact ritual spaces? Rapa Nui J. 32, 1–36 (2019).
Google Scholar
Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).
Google Scholar
Beck, J. W., Hewitt, L., Burr, G. S., Loret, J. & Hochstetter, F. T. Mata ki te rangi: eyes towards the heavens. in Easter Island: Scientific Exploration Into the World’s Environmental Problems in Microcosm (eds. Loret, J. & Tanacredi, J. T.) 93–112 (Kluwer Academic/Plenum Publishers, 2003).
Burr, G. S. et al. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51, 319–335 (2009).
Google Scholar
DiNapoli, R. J. et al. Marine reservoir corrections for the Caribbean demonstrate high intra- and inter-island variability in local reservoir offsets. Quat. Geochronol. 61, 101126 (2021).
Google Scholar
Surovell, T. A., Byrd Finley, J., Smith, G. M., Brantingham, P. J. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).
Google Scholar
Sunnåker, M. et al. Approximate Bayesian computation. PLoS Comput. Biol. 9, e1002803 (2013).
Google Scholar
Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009).
Google Scholar
Rick, J. W. Dates as data: an examination of the peruvian preceramic radiocarbon record. Am. Antiquity 52, 55–73 (1987).
Google Scholar
R Core Team. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).
Source: Ecology - nature.com