in

High-throughput 16S rRNA gene sequencing of the microbial community associated with palm oil mill effluents of two oil processing systems

  • 1.

    Igwe, J. C. & Onyegbado, C. C. A review of palm oil mill effluent (pome) water treatment. Glob. J. Environ. Res. 1, 54–62 (2007).

    Google Scholar 

  • 2.

    World Wild Fund (WWF). Overview WWF Statement on the 2020 Palm Oil Buyers Scorecard. https://www.worldwildlife.org/industries/palm-oil (2020). Accessed 22 Feb 2021.

  • 3.

    CNUCED. Huile de palme. New York. https://www.surunctad.org/commodities (2016). Accessed 10 Jan 2020.

  • 4.

    Hassan, M. A., Njeshu, G., Raji, A., Zhengwuvi, L. & Salisu, J. Small-Scale Palm Oil Processing in West and Central Africa: Development and Challenges. J. Appl. Sci. Environ. Sust. 2, 102–114 (2016).

    Google Scholar 

  • 5.

    Bala, J. D., Lalung, J., Al-Gheethi, A. A. S., Kaizar, H. & Ismail, N. Reduction of organic load and biodegradation of palm oil mill effluent by aerobic indigenous mixed microbial consortium isolated from palm oil mill effluent (POME). Water Conserv. Sci. Eng. 3, 139. https://doi.org/10.1007/s41101-018-0043-9 (2018).

    Article 

    Google Scholar 

  • 6.

    Nwoko, O. C., Ogunyemi, S. & Nkwocha, E. E. Effect of pre-treatment of palm oil mill effluent (POME) and cassava mill effluent (CME) on the growth of tomato (Lycopersicum esculentum). J. Appl. Sci. Environ. 14, 67. https://doi.org/10.4314/JASEM.V14I1.56493 (2010).

    Article 

    Google Scholar 

  • 7.

    Singh, G., Huan, L. K., Leng, T. & Kow D. L. Oil Palm and the Environment: A Malaysian Perspective. (Kuala Lumpur,
    Malaysia, Malaysian Oil Palm Growers’ Council, 1999).

  • 8.

    Poku, K. Small-Scale Palm Oil Processing in Africa. Fao Agricultural Services Bulletin 148. http://www.fao.org/3/Y4355E/y4355e00.htm (2002) (ISSN 1010-1365). Accessed 22 Feb 2021.

  • 9.

    Ibekwe, A. M., Grieve, C. M. & Lyon, S. R. Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl. Environ. Microbiol. 69, 5060. https://doi.org/10.1128/AEM.69.9.5060-5069.2003 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Sharuddin, S. S. et al. Bacterial community shift revealed Chromatiaceae and Alcaligenaceae as potential bioindicators in the receiving river due to palm oil mill effluent final discharge. Ecol. Indic. 82, 526–529. https://doi.org/10.1016/j.ecolind.2017.07.038 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    CIAPOL. Arrêté N°011264/MINEEF/CIAPOL/SDIIC du 04 Nov.2008 portant réglementation des rejets et emissions des installations classées pour la protection de l’environnement, 11 (2008).

  • 12.

    Soleimaninanadegani, M. & Manshad, S. Enhancement of biodegradation of palm oil mill effluents by local isolated microorganisms. Int. Sch. Res. Notices. 2014, Article ID 727049. https://doi.org/10.1155/2014/727049 (2014).

    Article 

    Google Scholar 

  • 13.

    Nwachukwu, J. N., Njoku, U. O., Agu, C. V., Okonkwo, C. C. & Obidiegwu, C. J. Impact of palm oil mill effluent (POME) contamination on soil enzyme activities and physicochemical properties. Res. J. Environ. Toxicol. 12, 34–41. https://doi.org/10.3923/rjet.2018.34.41 (2018).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Hii, K. L., Yeap, S. P. & Mashitah, M. D. Cellulase production from palm oil mill effluent in Malaysia: Economical and technical perspectives. Eng. Life Sci. 12, 7–28. https://doi.org/10.1002/elsc.201000228 (2012).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Ma, Q. et al. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants. Microbiol. Res. 175, 1–5. https://doi.org/10.1016/j.micres.2014.12.013 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Wang, X., Hu, M., Xia, Y., Wen, X. & Kun, D. K. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Bioresour. Technol. 78, 7042–7047. https://doi.org/10.1128/AEM.01617-12 (2012).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Wang, Z. et al. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS One 9, e113603. https://doi.org/10.1371/journal.pone.0113603 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Caporaso, J. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Rana, S., Singh, L., Wahid, Z. & Liu, H. A recent overview of palm oil mill effluent management via bioreactor configurations. Curr. Pollut. Rep. 3, 254–267. https://doi.org/10.1007/s40726-017-0068-2 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Vuono, D. C. et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 9, 425–435. https://doi.org/10.1038/ismej.2014.139 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Jang, H. M., Kim, J. H., Ha, J. H. & Park, J. M. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 165, 174–182. https://doi.org/10.1016/j.biortech.2014.02.028 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Mohd-Nor, D. et al. Dynamics of microbial populations responsible for biodegradation during the full-scale treatment of palm oil mill effluent. Microbes Environ. 34, 121. https://doi.org/10.1264/jsme2.ME18104 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Sun, Z. et al. Identification and characterization of the dominant lactic acid bacteria from kurut: The naturally fermented yak milk in Qinghai, China. J. Gen. Appl. Microbiol. 56, 1–10. https://doi.org/10.2323/jgam.56.1 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 14, 335–346 (2012).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Morrow, K. M., Fiore, C. L. & Lesser, M. P. Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ. Microbiol. 18, 2025–2038. https://doi.org/10.1111/1462-2920.13226 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Parman, A., Isa, M. N. M., Farah, F. B., Noorbatcha, B. A. & Salleh, H. M. Comparative metagenomics analysis of palm oil mill effluent (pome) using three different bioinformatics pipelines. IIUM Eng. J. 20, 1–11. https://doi.org/10.31436/iiumej.v20i1.909 (2019).

    Article 

    Google Scholar 

  • 27.

    Mwaikono, K. S. et al. High-throughput sequencing of 16S rRNa gene reveals substantial bacterial diversity on the municipal dumpsite. BMC Microbiol. 16, 145. https://doi.org/10.1186/s12866-016-0758-8 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Silva-Bedoya, L. M., Sánchez-Pinzón, M. S., Cadavid-Restrepo, G. E. & Moreno-Herrera, C. X. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms. Microbiol. Res. 192, 313. https://doi.org/10.1016/j.micres.2016.08.006 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Lam, M. K. & Lee, K. T. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnol. Adv. 29, 124–141. https://doi.org/10.1016/j.biotechadv.2010.10.001 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Baharuddin, A. S., Wakisaka, M., Shirai, A.-A.Y.S., Abdul, R. & Hassan, M. A. Co-composting of empty fruit bunches and partially treated palm oil mill effluents in pilot scale. Int. J. Agric. Res. 4, 69–78. https://doi.org/10.3923/ijar.2009.69.78 (2009).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Morikawa-Sakura, M. S. et al. Application of Lactobacillus plantarum ATCC 8014 for wastewater treatment in fisheries industry processing. Jpn. J. Water Treat. Biol. 49, 1–10. https://doi.org/10.2521/jswtb.49.1 (2013).

    Article 

    Google Scholar 

  • 32.

    Ren, Z., You, W., Wu, S., Poetsch, A. & Xu, C. Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol. Biofuels 12, 183. https://doi.org/10.1186/s13068-019-1522-8 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Lee, J. Z., Logan, A., Terry, S. & Spear, J. R. Microbial response to single-cell protein production and brewery wastewater treatment. Microb. Biotechnol. 8, 65. https://doi.org/10.1111/1751-7915.12128 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Ye, L. & Zhang, T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl. Microbiol. Biotechnol. 97, 2681–2690 (2013).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Stubbs, S., Mao, L., Waddington, R. J. & Embery, G. Hydrolytic and depolymerising enzyme activity of Prevotella intermedia and Prevotella nigrescens. Oral Dis. 2, 272. https://doi.org/10.1111/j.1601-0825.1996.tb00237.x (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Komagata, K., Iino, T. & Yamada, Y. The family Acetobacteraceae. In The Prokaryotes (eds Rosenberg, E. et al.) 3–78 (Springer, 2014).

    Chapter 

    Google Scholar 

  • 37.

    Pires, J. F., Cardoso, L. S., Schwan, R. F. & Silva, C. F. Diversity of microbiota found in coffee processing wastewater treatment plant. World J. Microbiol. Biotechnol. 33, 211. https://doi.org/10.1007/s11274-017-2372-9 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 38.

    Song, Z. Q., Wang, F. P. & Zhi, X. Y. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ. Microbiol. 15, 1160–1175 (2013).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Li, J., Liu, R., Tao, Y. & Li, G. Archaea in wastewater treatment: Current research and emerging technology. Archaea 2018, 1. https://doi.org/10.1155/2018/6973294 (2018).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Khan, M. A., Khan, S. T. & Sequeira, M. C. Comparative analysis of bacterial and archaeal population structure by illumina sequencing of 16S rRNA genes in three municipal anaerobic sludge digesters. Res. Sq. https://doi.org/10.21203/rs.3.rs-60183/v1 (2020).

    Article 

    Google Scholar 

  • 41.

    Mladenovska, Z., Dabrowski, S. & Ahring, B. K. Anaerobic digestion of manure and mixture of manure with lipids: Biogas reactor performance and microbial community analysis. Water Sci. Technol. 48, 271–278 (2013).

    Article 

    Google Scholar 

  • 42.

    Gerardi, M. H. Wastewater Bacteria (Wiley, 2006).

    Book 

    Google Scholar 

  • 43.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data (Online). https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010). Accessed 15 Sept 2019.

  • 45.

    R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). Accessed 8 Jan 2020.

  • 46.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581. https://doi.org/10.1038/nmeth.3869 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590. https://doi.org/10.1093/nar/gks1219 (2012).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Paradis, E., Julien, C. & Korbinian, S. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289. https://doi.org/10.1093/bioinformatics/btg412 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, 61217. https://doi.org/10.1371/journal.pone.0061217 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan (2018). Accessed 8 Jan 2020.

  • 51.

    Lahti, L. & Sudarshan, S. Tools for microbiome analysis in R. Version 1.10.0. https://www.microbiome.github.com/microbiome (2017). Accessed 8 Jan 2020.

  • 52.

    Kenkel, N. C. & Orloci, L. Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology 67, 919. https://doi.org/10.2307/1939814 (1986).

    Article 

    Google Scholar 

  • 53.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Revisiting a quantum past for a fusion future

    From NYC zookeeper to aspiring architect