in

Diversity increases yield but reduces harvest index in crop mixtures

  • 1.

    Weiner, J. Plant Reproductive Ecology: Patterns and Strategies (Oxford Univ. Press, 1988).

  • 2.

    Ashman, T. L. & Schoen, D. J. How long should flowers live? Nature 371, 788–791 (1994).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).

    Article 

    Google Scholar 

  • 4.

    Unkovich, M., Baldock, J. & Forbes, M. Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv. Agron. 105, 173–219 (2010).

    Article 

    Google Scholar 

  • 5.

    Tamagno, S., Sadras, V. O., Ortez, O. A. & Ciampitti, I. A. Allometric analysis reveals enhanced reproductive allocation in historical set of soybean varieties. Field Crop Res. 248, 107717 (2020).

    Article 

    Google Scholar 

  • 6.

    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Li, C. et al. Syndromes of production in intercropping impact yield gains. Nat. Plants 6, 653–660 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    McConnaughay, K. D. M. & Coleman, J. S. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80, 2581–2593 (1999).

    Article 

    Google Scholar 

  • 12.

    Bonser, S. P. & Aarssen, L. W. Allometry and plasticity of meristem allocation throughout development in Arabidopsis thaliana. J. Ecol. 89, 72–79 (2001).

    Article 

    Google Scholar 

  • 13.

    Reekie, E. G. & Bazzaz, F. A. Reproductive Allocation in Plants (Elsevier Academic Press, 2005).

  • 14.

    Wang, T. H., Zhou, D. W., Wang, P. & Zhang, H. X. Size-dependent reproductive effort in Amaranthus retroflexus: the influence of planting density and sowing date. Can. J. Bot. 84, 485–492 (2006).

    Article 

    Google Scholar 

  • 15.

    Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Li, C. et al. Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. Eur. J. Agron. 113, 125987 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Li, L., Tilman, D., Lambers, H. & Zhang, F. S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203, 63–69 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 20.

    Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol. 206, 107–117 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Martin-Guay, M. O., Paquette, A., Dupras, J. & Rivest, D. The new green revolution: sustainable intensification of agriculture by intercropping. Sci. Total Environ. 615, 767–772 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Bazzaz, F. A., Chiariello, N. R., Coley, P. D. & Pitelka, L. F. Allocating resources to reproduction and defense. Bioscience 37, 58–67 (1987).

    Article 

    Google Scholar 

  • 23.

    Hartnett, D. C. Size-dependent allocation to sexual and vegetative reproduction in 4 clonal composites. Oecologia 84, 254–259 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Vega, C. R. C., Sadras, V. O., Andrade, F. H. & Uhart, S. A. Reproductive allometry in soybean, maize and sunflower. Ann. Bot. 85, 461–468 (2000).

    Article 

    Google Scholar 

  • 25.

    Gifford, R. M., Thorne, J. H., Hitz, W. D. & Giaquinta, R. T. Crop productivity and photoassimilate partitioning. Science 225, 801–808 (1984).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Andrade, F. H. et al. Kernel number determination in maize. Crop Sci. 39, 453–459 (1999).

    Article 

    Google Scholar 

  • 27.

    Milla, R., Osborne, C. P., Turcotte, M. M. & Violle, C. Plant domestication through an ecological lens. Trends Ecol. Evol. 30, 463–469 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Niklas, K. J. Plant Allometry: The Scaling of Form and Process (Univ. of Chicago Press, 1994).

  • 29.

    Echarte, L. & Andrade, F. H. Harvest index stability of Argentinean maize hybrids released between 1965 and 1993. Field Crop Res. 82, 1–12 (2003).

    Article 

    Google Scholar 

  • 30.

    Weiner, J., Campbell, L. G., Pino, J. & Echarte, L. The allometry of reproduction within plant populations. J. Ecol. 97, 1220–1233 (2009).

    Article 

    Google Scholar 

  • 31.

    Sugiyama, S. & Bazzaz, F. A. Size dependence of reproductive allocation: the influence of resource availability, competition and genetic identity. Funct. Ecol. 12, 280–288 (1998).

    Article 

    Google Scholar 

  • 32.

    Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. 6, 207–215 (2004).

    Article 

    Google Scholar 

  • 33.

    Weiner, J. et al. Is reproductive allocation in Senecio vulgaris plastic? Botany 87, 475–481 (2009).

    Article 

    Google Scholar 

  • 34.

    Schmid, B. & Weiner, J. Plastic relationships between reproductive and vegetative mass in Solidago altissima. Evolution 47, 61–74 (1993).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Schmid, B. & Pfisterer, A. B. Species vs community perspectives in biodiversity experiments. Oikos 100, 620–621 (2003).

    Article 

    Google Scholar 

  • 36.

    Lipowsky, A. et al. Plasticity of functional traits of forb species in response to biodiversity. Perspect. Plant Ecol. Evol. Syst. 17, 66–77 (2015).

    Article 

    Google Scholar 

  • 37.

    Abakumova, M., Zobel, K., Lepik, A. & Semchenko, M. Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytol. 211, 455–463 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Zhu, J. Q., van der Werf, W., Anten, N. P. R., Vos, J. & Evers, J. B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol. 207, 1213–1222 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Niklaus, P. A., Baruffol, M., He, J. S., Ma, K. P. & Schmid, B. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity? Ecology 98, 1104–1116 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Eziz, A. et al. Drought effect on plant biomass allocation: a meta-analysis. Ecol. Evol. 7, 11002–11010.

  • 41.

    Joshi, J. et al. Local adaptation enhances performance of common plant species. Ecol. Lett. 4, 536–544 (2001).

    Article 

    Google Scholar 

  • 42.

    Li, J. et al. Variations in maize dry matter, harvest index, and grain yield with plant density. Agron. J. 107, 829–834 (2015).

    Article 

    Google Scholar 

  • 43.

    Gou, F., van Ittersum, M. K., Wang, G. Y., van der Putten, P. E. L. & van der Werf, W. Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Eur. J. Agron. 76, 17–27.

  • 44.

    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778.

  • 45.

    Roscher, C. & Schumacher, J. Positive diversity effects on productivity in mixtures of arable weed species as related to density–size relationships. J. Plant Ecol. 9, 792–804 (2016).

    Article 

    Google Scholar 

  • 46.

    Roscher, C. et al. Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecol. Lett. 8, 419–429.

  • 47.

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110.

  • 49.

    Rosenthal, R. & Rosnow, R. L. Contrast Analysis: Focused Comparisons in the Analysis of Variance (Cambridge Univ. Press, 2010).

  • 50.

    Díaz-Sierra, R., Verwijmeren, M., Rietkerk, M., de Dios, V. R. & Baudena, M. A new family of standardized and symmetric indices for measuring the intensity and importance of plant neighbour effects. Methods Ecol. Evol. 8, 580–591 (2017).

    Article 

    Google Scholar 

  • 51.

    Poorter, H. & Garnier, E. in Handbook of Functional Plant Ecology (eds Pugnaire, F. I. & Valladares, F.) 81–120 (Marcel Dekker, 1999).

  • 52.

    Grime, J. P. Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Article 

    Google Scholar 

  • 53.

    Wilson, P. J., Thompson, K. & Hodgson, J. G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 143, 155–162 (1999).

    Article 

    Google Scholar 

  • 54.

    Poorter, H., Niinemets, U., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Lavorel, S. & Grigulis, K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J. Ecol. 100, 128–140 (2012).

    Article 

    Google Scholar 

  • 56.

    Conti, G. & Díaz, S. Plant functional diversity and carbon storage – an empirical test in semi‐arid forest ecosystems. J. Ecol. 101, 18–28 (2013).

    CAS 
    Article 

    Google Scholar 

  • 57.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.r-project.org/

  • 58.

    Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    Article 

    Google Scholar 

  • 59.

    Lüdecke, D. sjPlot: data visualization for statistics in social science. Zenodo https://doi.org/10.5281/zenodo.1308157 (2018).


  • Source: Ecology - nature.com

    Revisiting a quantum past for a fusion future

    From NYC zookeeper to aspiring architect