in

Random population fluctuations bias the Living Planet Index

  • 1.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article 

    Google Scholar 

  • 2.

    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    PubMed 

    Google Scholar 

  • 3.

    Updated Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020); https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdf

  • 4.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Loh, J. et al. The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 360, 289–295 (2005).

    Article 

    Google Scholar 

  • 6.

    Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).

    Article 

    Google Scholar 

  • 7.

    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

    Article 

    Google Scholar 

  • 8.

    Almond, R.E.A., Grooten M. & Petersen, T. (eds) Living Planet Report 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).

  • 9.

    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  • 10.

    Global Biodiversity Outlook 5 (Convention on Biological Diversity, 2020).

  • 11.

    Jaspers, A. Can a single index track the state of global biodiversity? Biol. Conserv. 246, 108524 (2020).

    Article 

    Google Scholar 

  • 12.

    Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Buckland, S. T., Studeny, A. C., Magurran, A. E., Illian, J. & Newson, S. E. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2, 100 (2011).

  • 14.

    de Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76.

  • 15.

    Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Living Planet Report 2020. Technical Supplement: Living Planet Index (WWF, 2020); https://f.hubspotusercontent20.net/hubfs/4783129/LPR/PDFs/ENGLISH%20-%20TECH%20SUPPLIMENT.pdf

  • 17.

    Vellend, M. Conceptual synthesis in community ecology. Quart. Rev. Biol. 85, 183–206 (2010).

    Article 

    Google Scholar 

  • 18.

    Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).

    Article 

    Google Scholar 

  • 19.

    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    Article 

    Google Scholar 

  • 20.

    Gravel, D., Guichard, F. & Hochberg, M. E. Species coexistence in a variable world. Ecol. Lett. 14, 828–839 (2011).

    Article 

    Google Scholar 

  • 21.

    Kotze, D. J., O’Hara, R. B. & Lehvävirta, S. Dealing with varying detection probability, unequal sample sizes and clumped distributions in count data. PLoS ONE 7, e40923 (2012).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: a quantitative review. PLoS ONE 9, e111436 (2014).

    Article 

    Google Scholar 

  • 23.

    Di Fonzo, M., Collen, B. & Mace, G. M. A new method for identifying rapid decline dynamics in wild vertebrate populations. Ecol. Evol. 3, 2378–2391 (2013).

    Article 

    Google Scholar 

  • 24.

    Maxwell, S. L. et al. Being smart about SMART environmental targets. Science 347, 1075–1076 (2015).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Butchart, S. H. M., Di Marco, M. & Watson, J. E. M. Formulating SMART commitments on biodiversity: lessons from the Aichi Targets. Conserv Lett. 9, 457–468 (2016).

    Article 

    Google Scholar 

  • 26.

    Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).

    Article 

    Google Scholar 

  • 27.

    Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).

    Article 

    Google Scholar 

  • 28.

    Fournier, A. M. V., White, E. R. & Heard, S. B. Site‐selection bias and apparent population declines in long‐term studies. Conserv. Biol. 33, 1370–1379 (2019).

    Article 

    Google Scholar 

  • 29.

    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Papworth, S. K., Rist, J., Coad, L. & Milner-Gulland, E. J. Evidence for shifting baseline syndrome in conservation. Conserv Lett. 2, 93–100 (2009).

    Google Scholar 

  • 31.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).

    Article 

    Google Scholar 

  • 33.

    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social-ecological systems. Conserv. Biol. 35, 510–521 (2021).

    Article 

    Google Scholar 

  • 34.

    van Strien, A. J. et al. Modest recovery of biodiversity in a western European country: The Living Planet Index for the Netherlands. Biol. Conserv. 200, 44–50 (2016).

    Article 

    Google Scholar 

  • 35.

    Wauchope, H. S., Amano, T., Sutherland, W. J. & Johnston, A. When can we trust population trends? A method for quantifying the effects of sampling interval and duration. Methods Ecol. Evol. 10, 2067–2078 (2019).

    Article 

    Google Scholar 

  • 36.

    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.11.001 (2020).

  • 37.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 38.

    Buschke, F. T. Biodiversity trajectories and the time needed to achieve no net loss through averted-loss biodiversity offsets. Ecol. Model 352, 54–57 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Revisiting a quantum past for a fusion future

    From NYC zookeeper to aspiring architect