in

Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance

  • 1.

    Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Reinhold-Hurek, B. & Hurek, T. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14, 435–443 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. & Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ. Exp. Bot. 97, 30–39 (2014).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Ali, S., Charles, T. C. & Glick, B. R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80, 160–167 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Weyens, N., van der Lelie, D., Taghavi, S. & Vangronsveld, J. Phytoremediation: plant–endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20, 248–254 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Card, S. D. et al. Beneficial endophytic microorganisms of Brassica—A review. Biol. Control 90, 102–112 (2015).

    Article 

    Google Scholar 

  • 9.

    Shahzad, R., Khan, A. L., Bilal, S., Asaf, S. & Lee, I. J. What Is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci. 9, 24. https://doi.org/10.3389/fpls.2018.00024 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).

    Article 

    Google Scholar 

  • 11.

    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).

    Article 

    Google Scholar 

  • 12.

    van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Coats, V. C. & Rumpho, M. E. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5, 368. https://doi.org/10.3389/fmicb.2014.00368 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Richardson, D. M., Allsopp, N., D’antonio, C. M., Milton, S. J. & Rejmánek, M. Plant invasions—the role of mutualisms. Biol. Rev. 75, 65–93 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Pringle, A. et al. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Evol. Syst. 40, 699–715 (2009).

    Article 

    Google Scholar 

  • 16.

    Sun, Z.-K. & He, W.-M. Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE 5, e15418. https://doi.org/10.1371/journal.pone.0015418 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Kowalski, K. P. et al. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front. Microbiol. 6, 95. https://doi.org/10.3389/fmicb.2015.00095 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Dai, Z. C. et al. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front. Plant Sci. 7, 706. https://doi.org/10.3389/fpls.2016.00706 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Rout, M. E. et al. Bacterial endophytes enhance competition by invasive plants. Am. J. Bot. 100, 1726–1737 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Soares, M. A. et al. Functional role of bacteria from invasive Phragmites australis in promotion of host growth. Microb. Ecol. 72, 407–417 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Kim, Y.-H., Kil, J.-H., Hwang, S.-M. & Lee, C.-W. Spreading and distribution of Lactuca scariola, invasive alien plant, by habitat types in Korea. Weed Turfgrass Sci. 2, 138–151 (2013).

    Article 

    Google Scholar 

  • 22.

    Moon, S.-I. et al. Isolation and characterization of bio-active materials from prickly lettuce (Lactuca serriola). J. Life Sci. 19, 206–212 (2009).

    Article 

    Google Scholar 

  • 23.

    Lebeda, A. et al. Acquisition and ecological characterization of Lactuca serriola L germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genet. Resour. Crop Evol. 54, 555–562 (2007).

    Article 

    Google Scholar 

  • 24.

    Mallory-Smith, C. A., Thill, D. C. & Dial, M. J. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4, 163–168 (1990).

    Article 

    Google Scholar 

  • 25.

    Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401. https://doi.org/10.6064/2012/963401 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636. https://doi.org/10.3389/fmicb.2018.01636 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Alami, Y., Achouak, W., Marol, C. & Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobiums strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393–3398 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Sandhya, V., Grover, M., Reddy, G. & Venkateswarlu, B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertility Soils 46, 17–26 (2009).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Vardharajula, S. Exopolysaccharide production by drought tolerant Bacillus spp and effect on soil aggregation under drought stress. J. Microbiol. Biotechnol. Food Sci. 9, 51–57 (2020).

    Google Scholar 

  • 30.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Kang, S. H. et al. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L). J. Microbiol. Biotechnol. 17, 96–103 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Panwar, M., Tewari, R. & Nayyar, H. Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L) under soil salinity by reducing sodium uptake and stress injury. Physiol. Mol. Biol. Plants 22, 445–459 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Selvakumar, G. et al. Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24, 955–960 (2008).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Egamberdieva, D. et al. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10, 1–9 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Pereira, S., Castro, P. & Research, P. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ. Sci. Pollut. Res. 21, 14110–14123 (2014).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Sun, Z. et al. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 419, 1–11 (2017).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Pierik, R., Tholen, D., Poorter, H., Visser, E. J. W. & Voesenek, L. A. C. J. The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci. 11, 176–183 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Glick, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 30–39 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J. & Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17, 239–252 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Yu, Y.-C., Yum, S.-J., Jeon, D.-Y. & Jeong, H.-G. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechnol. 28, 1318–1331 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Brady, C. et al. Isolation of Enterobacter cowanii from Eucalyptus showing symptoms of bacterial blight and dieback in Uruguay. Lett. Appl. Microbiol. 49, 461–465 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, fiw083. https://doi.org/10.1093/femsec/fiw083 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Gao, H. et al. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int. J. Biol. Macromol. 150, 955–964 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Wang, L. et al. Development of sugarcane resource for efficient fermentation of exopolysaccharide by using a novel strain of Kosakonia cowanii LT-1. Bioresour. Technol. 280, 247–254 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Borlee, B. R. et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75, 827–842 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Huang, X.-F. et al. Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419, 523–539 (2017).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Marulanda, A., Barea, J.-M. & Azcón, R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 28, 115–124 (2009).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Niu, X., Song, L., Xiao, Y. & Ge, W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 8, 2580. https://doi.org/10.3389/fmicb.2017.02580 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Sandhya, V., Ali, S. Z., Grover, M., Reddy, G. & Venkateswarlu, B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulat. 62, 21–30 (2010).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Chen, C. et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci. Rep. 7, 41564. https://doi.org/10.1038/srep41564 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–11 (2016).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Zhang, N. et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374, 689–700 (2014).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Johnston-Monje, D. & Raizada, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE 6, e20396. https://doi.org/10.1371/journal.pone.0020396 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Coombs, J. T. & Franco, C. M. M. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603–5608. https://doi.org/10.1128/aem.69.9.5603-5608.2003 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Mehta, S. & Nautiyal, C. S. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43, 51–56 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Milagres, A. M., Machuca, A. & Napoleao, D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37, 1–6 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Dworkin, M. & Foster, J. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592–603 (1958).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Singh, J. K., Adams, F. G. & Brown, M. H. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front. Microbiol. 9, 3301 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Polak-Berecka, M., Waśko, A., Skrzypek, H. & Kreft, A. Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: biosynthesis and purification methods. Acta Aliment. 42, 220–228 (2013).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Tschaplinski, T. J. et al. The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Ann. Bot. 124, 617–626 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Michel, B. E. & Kaufmann, M. R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51, 914–916 (1973).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Hanna, A., Berg, M., Stout, V. & Razatos, A. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl. Environ. Microbiol. 69, 4474–4481 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Liu, S.-B. et al. Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl. Environ. Microbiol. 79, 224–230 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. & Smith, F. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Yahaghi, Z., Shirvani, M., Nourbakhsh, F. & Pueyo, J. J. Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. S. Afr. J. Bot. 124, 573–582 (2019).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Zhang, Z. & Huang, R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protoc. 3, e817 (2013).

    Google Scholar 

  • 69.

    Türkan, I., Bor, M., Özdemir, F. & Koca, H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168, 223–231 (2005).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    From NYC zookeeper to aspiring architect

    3Q: Why “nuclear batteries” offer a new approach to carbon-free energy