Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
Google Scholar
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Google Scholar
Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).
Google Scholar
LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 (2018).
Google Scholar
Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’ s coral reefs. Ove Hoegh-Guldberg (1998).
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018).
Google Scholar
Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2014).
Google Scholar
Muller, E. M., Rogers, C. S., Spitzack, A. S. & Van Woesik, R. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27, 191–195 (2008).
Google Scholar
Cróquer, A. & Weil, E. Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Dis. Aquat. Organ. 87, 33–43 (2009).
Google Scholar
Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).
Google Scholar
Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).
Google Scholar
Neal, B. P. et al. Caribbean massive corals not recovering from repeated thermal stress events during 2005–2013. Ecol. Evol. 7, 1339–1353 (2017).
Google Scholar
Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).
Google Scholar
Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).
Google Scholar
Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016).
Google Scholar
Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).
Google Scholar
Kleypas, J. A., McManu, J. W. & Mene, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999).
Google Scholar
Descombes, P. et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Chang. Biol. 21, 2479–2487 (2015).
Google Scholar
Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
Google Scholar
Mies, M. et al. South Atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 1–13 (2020).
Google Scholar
Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003).
Google Scholar
Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148 (2019).
Google Scholar
Beger, M., Sommer, B., Harrison, P. L., Smith, S. D. A. & Pandolfi, J. M. Conserving potential coral reef refuges at high latitudes. Divers. Distrib. 20, 245–257 (2014).
Google Scholar
Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).
Google Scholar
Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017).
Google Scholar
Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science (8-.) 361, 281–284 (2018).
Google Scholar
Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).
Google Scholar
Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 1–12 (2016).
Google Scholar
Morais, J. & Santos, B. A. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere 9, e02281 (2018).
Google Scholar
Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. https://doi.org/10.1038/nclimate3374 (2017).
Google Scholar
Danielle, C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun. 11(1), https://doi.org/10.1038/s41467-020-19169-y. (2020)
D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).
Google Scholar
Donovan, M.K.et al. Local conditions magnify coral loss after marine heatwaves. Science 372(6545), 977–980. https://doi.org/10.1126/science.abd9464. (2021)
Google Scholar
Hughes, T. et al. Climate change, Human impacts, and the resilience of coral reefs. Laser Induced Damage Opt. Mater. 2009 7504, 75041H (2003).
Carilli, J. E., Norris, R. D., Black, B. A., Walsh, S. M. & McField, M. Local stressors reduce coral resilience to bleaching. PLoS ONE 4, 1–5 (2009).
Google Scholar
Donner, S. D., Heron, S. F. & Skirving, W. J. Future scenarios: A review of modelling efforts to predict the future of coral reefs in an era of climate change. 159–173. https://doi.org/10.1007/978-3-540-69775-6_10 (2018).
McLeod, E. et al. Warming seas in the coral triangle: Coral reef vulnerability and management implications. Coast. Manag. 38, 518–539 (2010).
Google Scholar
Maynard, J. A. et al. Vulnerability to coral reefs. 1–8 (2019).
Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. Latin Am. Coral Reefs https://doi.org/10.1016/B978-044451388-5/50003-5 (2003).
Google Scholar
Leão, Z. M. A. N. & Kikuchi, R. K. P. A relic coral fauna threatened by global changes and human activities, Eastern Brazil. Mar. Pollut. Bull. 51, 599–611 (2005).
Google Scholar
Francini-Filho, R. B. & De Moura, R. L. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1166–1179 (2008).
Google Scholar
Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013).
Google Scholar
Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).
Google Scholar
Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, (2011).
Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2, 307 (2004).
Google Scholar
Aued, A. W. et al. Large-scale patterns of benthic marine communities in the brazilian province. PLoS ONE 13, 1–15 (2018).
Google Scholar
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).
Google Scholar
Phillips, N. A Companion to the e-Book “YaRrr!: The Pirate’s Guide to R”. (2017).
R Core Team. R: A Language and Environment for Statistical Computing. (2020).
Banha, T. N. S. et al. Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs https://doi.org/10.1007/s00338-019-01856-y (2019).
Google Scholar
Oliveira, U. D. R., Gomes, P. B., Cordeiro, R. T. S., De Lima, G. V. & Pérez, C. D. Modeling impacts of climate change on the potential habitat of an endangered Brazilian endemic coral: Discussion about deep sea refugia. PLoS ONE 14, 1–24 (2019).
Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).
Google Scholar
Price, N. N. et al. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Mar. Ecol. Prog. Ser. 621, 1–17 (2019).
Google Scholar
Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Chang. Biol. 21, 2272–2282 (2015).
Google Scholar
Baird, A. H. et al. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603, 257–264 (2018).
Google Scholar
Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 1–19 (2010).
Google Scholar
Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 2018, 1–24 (2018).
Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, 1–10 (2017).
Google Scholar
Wooldridge, S., Done, T., Berkelmans, R., Jones, R. & Marshall, P. Precursors for resilience in coral communities in a warming climate: A belief network approach. Mar. Ecol. Prog. Ser. 295, 157–169 (2005).
Google Scholar
Mazzei, E. F. et al. Newly discovered reefs in the southern Abrolhos Bank, Brazil: Anthropogenic impacts and urgent conservation needs. Mar. Pollut. Bull. 114, 123–133 (2017).
Google Scholar
Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).
Google Scholar
Ferreira L.C. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168(5), https://doi.org/10.1007/s00227-021-03863-6. (2021)
Teixeira, C. D. et al. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs https://doi.org/10.1007/s00338-019-01789-6 (2019).
Google Scholar
França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190116 (2020).
Google Scholar
Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5, 1–7 (2010).
Google Scholar
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-16 (2020).
Jokiel, P. L. Evaluating the assumptions involved. ICES J. Mar. Sci. 73, 550–557 (2015).
Google Scholar
Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. Glob. Chang. Biol. 26, 3473–3481 (2020).
Google Scholar
Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
Google Scholar
Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
Google Scholar
Sbrocco, E. J. & Barber, P. H. MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94, 979–979 (2013).
Google Scholar
Hijmans, J. R. et al. Package ‘ raster ’ R topics documented (2016).
Sappington, J. M., Longshore, K. M. & Thompson, D. B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave desert. J. Wildl. Manag. 71, 1419–1426 (2007).
Google Scholar
IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
Fox, J. & Weisberg, S. Multivariate Linear Models in R. An R Companion to Appl. Regres. 1–31 (2011).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Required Pre-knowledge : A Linear Regression. Mixed Effects Models and Extensions in Ecology with R 1, (2009).
Martins, T. G., Simpson, D., Lindgren, F. & Rue, H. Bayesian computing with INLA: New features. (2012).
Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).
Google Scholar
Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian MARKOV random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 423–498 (2011).
Google Scholar
Muñoz, F., Pennino, M. G., Conesa, D., López-Quílez, A. & Bellido, J. M. Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch. Environ. Res. Risk Assess. 27, 1171–1180 (2013).
Google Scholar
Held, L., Schrödle, B. & Rue, H. Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA. Stat. Model. Regres. Struct. Festschrift Honour Ludwig Fahrmeir 1–20 (2010). https://doi.org/10.1007/978-3-7908-2413-1
Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).
Google Scholar
Roos, M. & Held, L. Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Anal. 6, 259–278 (2011).
Google Scholar
Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017).
Google Scholar
Pennino, M. G., Vilela, R., Bellido, J. M. & Velasco, F. Balancing resource protection and fishing activity: The case of the European hake in the northern Iberian Peninsula. Fish. Oceanogr. 28, 54–65 (2019).
Google Scholar
Martínez-Minaya, J. et al. A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Mol. Ecol. Resour. 19, 929–943 (2019).
Google Scholar
Source: Ecology - nature.com