in

Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming

  • 1.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 3.

    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).

    Article 

    Google Scholar 

  • 4.

    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’ s coral reefs. Ove Hoegh-Guldberg (1998).

  • 6.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2014).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 8.

    Muller, E. M., Rogers, C. S., Spitzack, A. S. & Van Woesik, R. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27, 191–195 (2008).

    Article 
    ADS 

    Google Scholar 

  • 9.

    Cróquer, A. & Weil, E. Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Dis. Aquat. Organ. 87, 33–43 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 11.

    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Neal, B. P. et al. Caribbean massive corals not recovering from repeated thermal stress events during 2005–2013. Ecol. Evol. 7, 1339–1353 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).

    Article 

    Google Scholar 

  • 14.

    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).

    Article 

    Google Scholar 

  • 15.

    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016).

    Article 

    Google Scholar 

  • 16.

    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Kleypas, J. A., McManu, J. W. & Mene, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999).

    Article 

    Google Scholar 

  • 18.

    Descombes, P. et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Chang. Biol. 21, 2479–2487 (2015).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 19.

    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).

    Article 

    Google Scholar 

  • 20.

    Mies, M. et al. South Atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 1–13 (2020).

    Article 
    ADS 

    Google Scholar 

  • 21.

    Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003).

    Article 

    Google Scholar 

  • 22.

    Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Beger, M., Sommer, B., Harrison, P. L., Smith, S. D. A. & Pandolfi, J. M. Conserving potential coral reef refuges at high latitudes. Divers. Distrib. 20, 245–257 (2014).

    Article 

    Google Scholar 

  • 24.

    Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).

    Article 
    ADS 

    Google Scholar 

  • 25.

    Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017).

    Article 
    ADS 

    Google Scholar 

  • 26.

    Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science (8-.) 361, 281–284 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 27.

    Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 1–11 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 1–12 (2016).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Morais, J. & Santos, B. A. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere 9, e02281 (2018).

    Article 

    Google Scholar 

  • 31.

    Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. https://doi.org/10.1038/nclimate3374 (2017).

    Article 

    Google Scholar 

  • 32.

    Danielle, C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun. 11(1), https://doi.org/10.1038/s41467-020-19169-y. (2020)

  • 33.

    D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).

    Article 

    Google Scholar 

  • 34.

    Donovan, M.K.et al. Local conditions magnify coral loss after marine heatwaves. Science 372(6545), 977–980. https://doi.org/10.1126/science.abd9464. (2021)

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Hughes, T. et al. Climate change, Human impacts, and the resilience of coral reefs. Laser Induced Damage Opt. Mater. 2009 7504, 75041H (2003).

  • 36.

    Carilli, J. E., Norris, R. D., Black, B. A., Walsh, S. M. & McField, M. Local stressors reduce coral resilience to bleaching. PLoS ONE 4, 1–5 (2009).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Donner, S. D., Heron, S. F. & Skirving, W. J. Future scenarios: A review of modelling efforts to predict the future of coral reefs in an era of climate change. 159–173. https://doi.org/10.1007/978-3-540-69775-6_10 (2018).

  • 38.

    McLeod, E. et al. Warming seas in the coral triangle: Coral reef vulnerability and management implications. Coast. Manag. 38, 518–539 (2010).

    Article 

    Google Scholar 

  • 39.

    Maynard, J. A. et al. Vulnerability to coral reefs. 1–8 (2019).

  • 40.

    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. Latin Am. Coral Reefs https://doi.org/10.1016/B978-044451388-5/50003-5 (2003).

    Article 

    Google Scholar 

  • 41.

    Leão, Z. M. A. N. & Kikuchi, R. K. P. A relic coral fauna threatened by global changes and human activities, Eastern Brazil. Mar. Pollut. Bull. 51, 599–611 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Francini-Filho, R. B. & De Moura, R. L. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1166–1179 (2008).

    Article 

    Google Scholar 

  • 43.

    Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013).

    Article 
    ADS 

    Google Scholar 

  • 44.

    Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).

    Article 

    Google Scholar 

  • 45.

    Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, (2011).

  • 46.

    Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2, 307 (2004).

    Article 

    Google Scholar 

  • 47.

    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the brazilian province. PLoS ONE 13, 1–15 (2018).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Phillips, N. A Companion to the e-Book “YaRrr!: The Pirate’s Guide to R”. (2017).

  • 50.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 51.

    Banha, T. N. S. et al. Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs https://doi.org/10.1007/s00338-019-01856-y (2019).

    Article 

    Google Scholar 

  • 52.

    Oliveira, U. D. R., Gomes, P. B., Cordeiro, R. T. S., De Lima, G. V. & Pérez, C. D. Modeling impacts of climate change on the potential habitat of an endangered Brazilian endemic coral: Discussion about deep sea refugia. PLoS ONE 14, 1–24 (2019).

    Google Scholar 

  • 53.

    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Price, N. N. et al. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Mar. Ecol. Prog. Ser. 621, 1–17 (2019).

    Article 
    ADS 

    Google Scholar 

  • 55.

    Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Chang. Biol. 21, 2272–2282 (2015).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 56.

    Baird, A. H. et al. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603, 257–264 (2018).

    Article 
    ADS 

    Google Scholar 

  • 57.

    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 1–19 (2010).

    Article 

    Google Scholar 

  • 58.

    Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 2018, 1–24 (2018).

    Google Scholar 

  • 59.

    Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, 1–10 (2017).

    Article 

    Google Scholar 

  • 60.

    Wooldridge, S., Done, T., Berkelmans, R., Jones, R. & Marshall, P. Precursors for resilience in coral communities in a warming climate: A belief network approach. Mar. Ecol. Prog. Ser. 295, 157–169 (2005).

    Article 
    ADS 

    Google Scholar 

  • 61.

    Mazzei, E. F. et al. Newly discovered reefs in the southern Abrolhos Bank, Brazil: Anthropogenic impacts and urgent conservation needs. Mar. Pollut. Bull. 114, 123–133 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).

    Article 

    Google Scholar 

  • 63.

    Ferreira L.C. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168(5), https://doi.org/10.1007/s00227-021-03863-6. (2021)

  • 64.

    Teixeira, C. D. et al. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs https://doi.org/10.1007/s00338-019-01789-6 (2019).

    Article 

    Google Scholar 

  • 65.

    França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190116 (2020).

    Article 

    Google Scholar 

  • 66.

    Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5, 1–7 (2010).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-16 (2020).

  • 68.

    Jokiel, P. L. Evaluating the assumptions involved. ICES J. Mar. Sci. 73, 550–557 (2015).

    Article 

    Google Scholar 

  • 69.

    Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. Glob. Chang. Biol. 26, 3473–3481 (2020).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 70.

    Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Article 

    Google Scholar 

  • 71.

    Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Article 

    Google Scholar 

  • 72.

    Sbrocco, E. J. & Barber, P. H. MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94, 979–979 (2013).

    Article 

    Google Scholar 

  • 73.

    Hijmans, J. R. et al. Package ‘ raster ’ R topics documented (2016).

  • 74.

    Sappington, J. M., Longshore, K. M. & Thompson, D. B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave desert. J. Wildl. Manag. 71, 1419–1426 (2007).

    Article 

    Google Scholar 

  • 75.

    IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).

  • 76.

    Fox, J. & Weisberg, S. Multivariate Linear Models in R. An R Companion to Appl. Regres. 1–31 (2011).

  • 77.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Required Pre-knowledge : A Linear Regression. Mixed Effects Models and Extensions in Ecology with R 1, (2009).

  • 78.

    Martins, T. G., Simpson, D., Lindgren, F. & Rue, H. Bayesian computing with INLA: New features. (2012).

  • 79.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 80.

    Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian MARKOV random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 423–498 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 81.

    Muñoz, F., Pennino, M. G., Conesa, D., López-Quílez, A. & Bellido, J. M. Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch. Environ. Res. Risk Assess. 27, 1171–1180 (2013).

    Article 

    Google Scholar 

  • 82.

    Held, L., Schrödle, B. & Rue, H. Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA. Stat. Model. Regres. Struct. Festschrift Honour Ludwig Fahrmeir 1–20 (2010). https://doi.org/10.1007/978-3-7908-2413-1

  • 83.

    Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).

    MathSciNet 
    MATH 

    Google Scholar 

  • 84.

    Roos, M. & Held, L. Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Anal. 6, 259–278 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 85.

    Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 86.

    Pennino, M. G., Vilela, R., Bellido, J. M. & Velasco, F. Balancing resource protection and fishing activity: The case of the European hake in the northern Iberian Peninsula. Fish. Oceanogr. 28, 54–65 (2019).

    Article 

    Google Scholar 

  • 87.

    Martínez-Minaya, J. et al. A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Mol. Ecol. Resour. 19, 929–943 (2019).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    From NYC zookeeper to aspiring architect

    3Q: Why “nuclear batteries” offer a new approach to carbon-free energy