in

Human encroachment into wildlife gut microbiomes

  • 1.

    Cunningham, A. A., Daszak, P. & Wood, J. L. N. One health, emerging infectious diseases and wildlife: two decades of progress? Philos. Trans. R. Soc. B Biol. Sci. 372, 20160167 (2017).

  • 2.

    Suzan, G., Esponda, F., Carrasco-Hernández, R. & Aguirre, A. A. in New Directions in Conservation Medicine: Applied Cases of Ecological Health (eds. Aguirre, A. A., Ostfeld, R. & Daszak, P.). 135–150 (Oxford University Press USA, 2012).

  • 3.

    Hussain, S., Ram, M. S., Kumar, A., Shivaji, S. & Umapathy, G. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus) in its fragmented rainforest habitats in Southern India. PLoS ONE 8, 1–8 (2013).

    Google Scholar 

  • 4.

    Junge, R. E., Barrett, M. A. & Yoder, A. D. Effects of anthropogenic disturbance on indri (Indri indri) health in Madagascar. Am. J. Primatol. 73, 632–642 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Friggens, M. M. & Beier, P. Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia 164, 809–820 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Woodroffe, R. et al. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS ONE 7, e30099 (2012).

  • 7.

    Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G. & Lugo, A. E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6, 238–246 (2008).

    Article 

    Google Scholar 

  • 8.

    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

  • 10.

    Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Shapira, M. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Brugman, S. et al. A comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front. Nutr. 5, 1–15 (2018).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Wasimuddin et al. Astrovirus infections induce age-dependent dysbiosis in gut microbiomes of bats. ISME J. 12, 2883–2893 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Wasimuddin et al. Adenovirus infection is associated with altered gut microbial communities in a non-human primate. Sci. Rep. 9, 1–12 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Wilkins, L. J., Monga, M. & Miller, A. W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 9, 1–10 (2019).

    Google Scholar 

  • 17.

    Brüssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol. 13, 423–434 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B Biol. Sci. 285, 20182047 (2018).

  • 19.

    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Ingala, M. R., Becker, D. J., Bak Holm, J., Kristiansen, K. & Simmons, N. B. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol. Evol. https://doi.org/10.1002/ece3.5228 (2019)

  • 21.

    Juan, P. A. S., Hendershot, J. N., Daily, G. C. & Fukami, T. Land-use change has host-specificinfluenc on avian gut microbiomes. ISME J. https://doi.org/10.1038/s41396-019-0535-4 (2019)

  • 22.

    Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    de Juan, S., Thrush, S. F. & Hewitt, J. E. Counting on β-diversity to safeguard the resilience of estuaries. PLoS ONE 8, 1–11 (2013).

    Google Scholar 

  • 24.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

  • 25.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5. https://github.com/vegandevs/vegan (2019).

  • 26.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, 1988).

  • 28.

    Gillingham, M. A. F. et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front. Microbiol. 10, 35 (2019).

  • 29.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Heal. Dis. 26, 1–7 (2015).

    Google Scholar 

  • 31.

    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 669–673 (2020).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Czech, L., Barbera, P. & Stamatakis, A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics 36, 3263–3265 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Nyhus, P. J. Human—wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).

    Article 

    Google Scholar 

  • 36.

    Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Chang. 10, 1–36 (2019).

    Article 

    Google Scholar 

  • 37.

    Beck, J. M. et al. Multicenter comparison of lung and oral microbiomes of HIV-infected and HIV-uninfected individuals. Am. J. Respir. Crit. Care Med. 192, 1335–1344 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Wang, L. et al. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. Front. Mar. Sci. 5, 1–16 (2018).

    Article 

    Google Scholar 

  • 41.

    Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).

  • 42.

    Rocca, J. D. et al. The Microbiome Stress Project: toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front. Microbiol. 10, 3272 (2019).

  • 43.

    Gillingham, M. A. F. et al. Bioaccumulation of trace elements affects chick body condition and gut microbiome in greater flamingos. Sci. Total Environ. 761, 143250 (2020).

  • 44.

    Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1392 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Jiménez, R. R., Alvarado, G., Estrella, J. & Sommer, S. Moving beyond the host: unraveling the skin microbiome of endangered Costa Rican amphibians. Front. Microbiol. 10, 1–18 (2019).

    Article 

    Google Scholar 

  • 46.

    Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B Biol. Sci. 366, 2351–2363 (2011).

    Article 

    Google Scholar 

  • 48.

    Pound, K. L., Lawrence, G. B. & Passy, S. I. Beta diversity response to stress severity and heterogeneity in sensitive versus tolerant stream diatoms. Divers. Distrib. 25, 374–384 (2019).

    Article 

    Google Scholar 

  • 49.

    Zhou, J. & Ning, D. Stochastic Community Assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, 1–32 (2017).

    Article 

    Google Scholar 

  • 50.

    Nicholas, R. A. J. & Ayling, R. D. Mycoplasma bovis: disease, diagnosis, and control. Res. Vet. Sci. 74, 105–112 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Ley, D. H. in Diseases of Poultry (eds. et al.) (Blackwell Publishing, 2008).

  • 52.

    Groebel, K., Hoelzle, K., Wittenbrink, M. M., Ziegler, U. & Hoelzle, L. E. Mycoplasma suis invades porcine erythrocytes. Infect. Immun. 77, 576–584 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    do Nascimento, N. C., Santos, A. P., Guimaraes, A. M. S., Sanmiguel, P. J. & Messick, J. B. Mycoplasma haemocanis—the canine hemoplasma and its feline counterpart in the genomic era. Vet. Res. 43, 66 (2012).

  • 54.

    Hardham, J. M. et al. Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontitis patients. Int. J. Syst. Evol. Microbiol. 58, 103–109 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Kaakoush, N. O. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5, 1–4 (2015).

    Article 
    CAS 

    Google Scholar 

  • 56.

    Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).

    Article 

    Google Scholar 

  • 57.

    Herrmann, E. et al. RNA-based stable isotope probing suggests Allobaculum spp. as particularly active glucose assimilators in a complex murine microbiota cultured in vitro. Biomed Res. Int. 2017, 1829685 (2017).

  • 58.

    Greetham, H. L. et al. Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. Anaerobe 10, 301–307 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 11, 1–14 (2020).

  • 60.

    Wiegel, J., Tanner, R. & Rainey, F. A. in The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria (eds. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) 654–678 (Springer US, 2006).

  • 61.

    Tamanai-Shacoori, Z. et al. Roseburia spp.: a marker of health? Future Microbiol 12, 157–170 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Freier, T. A., Beitz, D. C., Li, L. & Hartman, P. A. Characterization of Eubacterium coprostanoligenes sp. nov., a Cholesterol-Reducing Anaerobe. Int. J. Syst. Bacteriol. 44, 137–142 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Venegas, D. P. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

  • 64.

    MetaCyc. MetaCyc Pathway: pyrimidine deoxyribonucleotides biosynthesis from CTP. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-7210&show-citations=T (2020).

  • 65.

    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    MetaCyc. MetaCyc Pathway: poly(glycerol phosphate) wall teichoic acid biosynthesis. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=TEICHOICACID-PWY (2020).

  • 67.

    Brown, S., Santa Maria, J. P. & Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    MetaCyc. MetaCyc Pathway: L-lysine biosynthesis II. https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-2941 (2020).

  • 69.

    Hutton, C. A., Perugini, M. A. & Gerrard, J. A. Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol. Biosyst. 3, 458–465 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Wanner, S. et al. Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nat. Microbiol. 2, 1–12 (2017).

    Google Scholar 

  • 71.

    MetaCyc. MetaCyc Pathway: formaldehyde assimilation II (assimilatory RuMP Cycle). https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-1861 (2020).

  • 72.

    Chen, N. H., Djoko, K. Y., Veyrier, F. J. & McEwan, A. G. Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 7, 1–17 (2016).

    Google Scholar 

  • 73.

    Tauseef, S. M., Premalatha, M., Abbasi, T. & Abbasi, S. A. Methane capture from livestock manure. J. Environ. Manag. 117, 187–207 (2013).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Dale, V. H., Brown, S., Calderón, M. O., Montoya, A. S. & Martínez, R. E. Estimating baseline carbon emissions for the eastern Panama Canal watershed. Mitig. Adapt. Strateg. Glob. Chang 8, 323–348 (2003).

    Article 

    Google Scholar 

  • 75.

    Schmid, J. et al. Ecological drivers of Hepacivirus infection in a neotropical rodent inhabiting landscapes with various degrees of human environmental change. Oecologia https://doi.org/10.1007/s00442-018-4210-7 (2018)

  • 76.

    Adler, G. H. & Beatty, R. P. Changing reproductive rates in a neotropical forest rodent, Proechimys semispinosus. J. Anim. Ecol. 66, 472 (1997).

    Article 

    Google Scholar 

  • 77.

    Adler, G. H. Fruit and seed exploitation by Central American spiny rats, Proechimys semispinosus. Stud. Neotrop. Fauna Environ. 30, 237–244 (1995).

  • 78.

    Hoch, G. A. & Adler, G. H. Removal of black palm (Astrocaryum standleyanum) seeds by spiny rats (Proechimys semispinosus). J. Trop. Ecol. 13, 51–58 (1997).

    Article 

    Google Scholar 

  • 79.

    Endries, M. J. & Adler, G. H. Spacing patterns of a tropical forest rodent, the spiny rat (Proechimys semispinosus), in Panama. J. Zool. 265, 147–155 (2005).

    Article 

    Google Scholar 

  • 80.

    Adler, G. H. The island syndrome in isolated populations of a tropical forest rodent. Oecologia 108, 694–700 (1996).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Menke, S. et al. Oligotyping reveals differences between gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level. Front. Microbiol. 5, 526 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Callahan, B. J., Mcmurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article 
    CAS 

    Google Scholar 

  • 88.

    Yilmaz, P. et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).

    Article 
    CAS 

    Google Scholar 

  • 89.

    Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 90.

    Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

  • 91.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—āpproximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

  • 92.

    Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/index.html (2017).

  • 94.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

  • 95.

    Davis, N. M., Proctor, Di. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).

    Article 

    Google Scholar 

  • 96.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article 

    Google Scholar 

  • 97.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article 

    Google Scholar 

  • 98.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • 99.

    Mcmurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

  • 100.

    Kim, Y. S., Unno, T., Kim, B.-Y. & Park, M. Sex differences in gut microbiota. World J. Mens. Health 38, 48–60 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl Acad. Sci. USA 116, 23588–23593 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 103.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).

  • 104.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • 105.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 106.

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 107.

    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). https://doi.org/10.1002/9781118445112.stat07841. (2017)

  • 109.

    Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).

    Article 

    Google Scholar 

  • 110.

    Li, H. et al. Pika population density is associated with the composition and diversity of gut microbiota. Front. Microbiol. 7, 1–9 (2016).

    Google Scholar 

  • 111.

    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 1–18 (2017).

    Article 

    Google Scholar 

  • 112.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  • 113.

    Fackelmann, G. gfackelmann/human-encroachment-into-wildlife-gut-microbiomes: Release 1.0.0. https://doi.org/10.5281/zenodo.4725220. (2021)


  • Source: Ecology - nature.com

    From NYC zookeeper to aspiring architect

    3Q: Why “nuclear batteries” offer a new approach to carbon-free energy