in

A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments

  • 1.

    Zhao, F. et al. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology 40, 50–69 (2014).

    Article 

    Google Scholar 

  • 2.

    Zhu, M.-Y., Zhang, J.-M. & Li, G.-X. Sedimentary environments of the early Cambrian Chengjiang biota: sedimentology of the Yu’anshan Formation in Chengjiang County, eastern Yunnan. Acta Palaeontol. Sin. 40, 80–105 (2001).

    Google Scholar 

  • 3.

    Hu, S.-X. Taphonomy and palaeoecology of the early Cambrian Chengjiang Biota from eastern Yunnan, China. Berl. Palobiologische Abhandlungen 7 (2005).

  • 4.

    Hou, X. et al. The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life 2nd edn (John Wiley & Sons, 2017).

  • 5.

    Zhang, W.-T. & Hou, X.-G. Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia. Acta Palaeontol. Sin. 24, 591–595 (1985).

    Google Scholar 

  • 6.

    Luo, H.-L, Hu, S.-X, Chen, L.-Z, Zhang, S.-S & Tao, Y.-H. Early Cambrian Chengjiang Fauna from Kunming Region, China (Yunnan Science and Technology Press, 1999).

  • 7.

    Chen, J.-Y The Dawn of Animal World (Jiangsu Science and Technology Press, China, 2004).

  • 8.

    Duan, Y. et al. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the lower Cambrian Chengjiang Lagerstätte, South China. Gondwana Res. 25, 983–990 (2014).

    Article 

    Google Scholar 

  • 9.

    Zhao, F.-C., Zhu, M.-Y. & Hu, S.-X. Community structure and composition of the Cambrian Chengjiang biota. Sci. China Earth Sci. 53, 1784–1799 (2010).

    Article 

    Google Scholar 

  • 10.

    Liu, Y. et al. Three-dimensionally preserved minute larva of a great-appendage arthropod from the early Cambrian Chengjiang biota. Proc. Natl Acad. Sci. USA 113, 5542–5546 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Ou, Q. et al. Evolutionary trade-off in reproduction of Cambrian arthropods. Sci. Adv. 6, 33–76 (2020).

    Google Scholar 

  • 12.

    Dornbos, S. Q. & Chen, J.-Y. Community palaeoecology of the Early Cambrian Maotianshan Shale biota: ecological dominance of priapulid worms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 200–212 (2008).

    Article 

    Google Scholar 

  • 13.

    Fu, D. et al. The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 363, 1338–1342 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Caron, J.-B. & Jackson, D. A. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 222–256 (2008).

  • 15.

    Nanglu, K., Caron, J.-B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81 (2020).

    Article 

    Google Scholar 

  • 16.

    Gaines, R. R. in Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization Vol. 20 (eds Laflamme, M. et al.) 123–146 (Paleontological Research Institution, 2014).

  • 17.

    Zhai, D. et al. Variation in appendages in early Cambrian bradoriids reveals a wide range of body plans in stem-euarthropods. Commun. Biol. 2, 329 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Isaevaa, V. V., Ozernyukc, N. D. & Rozhnov, S. V. Evidence for evolutionary changes in ontogeny: paleontological, comparative morphological, and molecular aspects. Biol. Bull. 40, 243–252 (2013).

    Article 

    Google Scholar 

  • 19.

    Liu, Y., Haug, J. T., Haug, C., Briggs, D. E. G. & Hou, X.-G. A 520 million-year-old chelicerate larva. Nat. Commun. 5, 4440 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Chipman, A. D. An embryological perspective on the early arthropod fossil record. BMC Evol. Biol. 15, 285 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Wolfe, J. M. Metamorphosis is ancestral for crown euarthropods, and evolved in the Cambrian or earlier. Integr. Comp. Biol. 57, 499–509 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Haug, T. J. Why the term “larva” is ambiguous, or what makes a larva? Acta Zool. 101, 167–188 (2018).

    Article 

    Google Scholar 

  • 23.

    Fu, D., Zhang, X., Budd, G. E., Liu, W. & Pan, X. Ontogeny and dimorphism of Isoxys auritus (Arthropoda) from the Early Cambrian Chengjiang biota, South China. Gondwana Res. 25, 975–982 (2014).

    Article 

    Google Scholar 

  • 24.

    Yang, X.-F., Kimmig, J., Lieberman, B. S. & Peng, S.-C. A new species of the deuterostome Herpetogaster from the early Cambrian Chengjiang biota of South China. Sci. Nat. 107, 37 (2020).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Zhai, D. Y. et al. Fine-scale appendage structure of the Cambrian trilobitomorph Naraoia spinosa and its ontogenetic and ecological implications. Proc. R. Soc. B 286, 20192371 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Hughes, N. C. et al. Articulated trilobite ontogeny: suggestions for a methodological standard. J. Paleont. 95, 298–304 (2021).

    Article 

    Google Scholar 

  • 27.

    Chen, J.-Y. & Zhou, G.-Q. Biology of the Chengjiang fauna. Bull. Natl Mus. Nat. Sci. 10, 11–106 (1997).

    Google Scholar 

  • 28.

    Haug, J. T., Caron, J.-B. & Haug, C. Demecology in the Cambrian: synchronized moulting in arthropods from the Burgess Shale. BMC Biol. 11, 64 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Robison, R. A., Babcock, L. E. & Gunther, V. G. Exceptional Cambrian fossils from Utah: A Window into the Age of Trilobites (Utah Geological Survey, 2015).

  • 30.

    Kimmig, J., Strotz, L. C., Kimmig, S. R., Egenhoff, S. O. & Lieberman, B. S. The Spence Shale Lagerstätte: an important window into Cambrian biodiversity. J. Geol. Soc. Lond. 176, 609–619 (2019).

    Article 

    Google Scholar 

  • 31.

    Paterson, J. R. et al. The Emu Bay Shale Konservat-Lagerstätte: a view of Cambrian life from East Gondwana. J. Geol. Soc. Lond. 173, 3107 (2016).

  • 32.

    Du, K. et al. A new early Cambrian Konservat-Lagerstätte expands the occurrence of Burgess Shale-type deposits on the Yangtze Platform. Earth Sci. Rev. 211, 103409 (2020).

    Article 

    Google Scholar 

  • 33.

    Harper, D. A. T. et al. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian explosion. J. Geol. Soc. Lond. 176, 1023–1037 (2019).

    Article 

    Google Scholar 

  • 34.

    Chen, L. Z et al. Early Cambrian Chengjiang Fauna in Eastern Yunnan, China (Yunnan Science and Technology Press, 2002).

  • 35.

    Zhao, F. C., Caron, J.-B., Hu, S. X. & Zhu, M. Y. Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstätte. PALAIOS 24, 826–839 (2009).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Beck, M. K. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51, 633–641 (2001).

    Article 

    Google Scholar 

  • 37.

    Botton, M. L. & Loveland, R. E. Abundance and dispersal potential of horseshoe crab (Limulus polyphemus) larvae in the Delaware estuary. Estuar. Coasts 26, 1472–1479 (2003).

    Article 

    Google Scholar 

  • 38.

    Watson, W. H. & Chabot, C. C. High resolution tracking of adult horseshoe crabs Limulus polyphemus in a New Hampshire estuary using a fixed array ultrasonic telemetry. Curr. Zool. 56, 599–610 (2010).

    Article 

    Google Scholar 

  • 39.

    Perry, F. A. et al. Habitat partitioning in Antarctic krill: spawning hotspots and nursery areas. PLoS ONE 14, e0219325 (2019).

  • 40.

    Nagelkerken, I. in Ecological Connectivity among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 357–399 (Springer, 2009).

  • 41.

    Kanciruk, P. in The Biology and Management of Lobsters Vol. 2 (eds Cobb, J. S. & Phillips, B. F.) 59–96 (Academic Press, 1980).

  • 42.

    Sandt, V. J. & Stoner, A. W. Ontogenetic shift in habitat by early juvenile queen conch, Strombus gigas: patterns and potential mechanisms. Fish. Bull. 91, 516–525 (1993).

    Google Scholar 

  • 43.

    Pedrotti, M. L. & Fenaux, L. Dispersal of echinoderm larvae in a geographical area marked by upwelling (Ligurian Sea, NW Mediterranean). Mar. Ecol. Prog. Ser. 87, 217–227 (1992).

    Article 

    Google Scholar 

  • 44.

    Zhai, D. et al. Spatial heterogeneity of the population age structure of the ostracode Limnocythere inopinata in Hulun Lake, Inner Mongolia and its implications. Hydrobiologia 716, 29–46 (2013).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Baillon, S., Hamel, J. F., Wareham, V. E. & Mercier, A. Deep cold-water corals as nurseries for fish larvae. Front. Ecol. Environ. 10, 351–356 (2012).

    Article 

    Google Scholar 

  • 46.

    Treude, T., Kiel, S., Linke, P., Peckmann, J. & Goedert, J. Elasmobranch egg capsules associated with modern and ancient cold seeps: a nursery for marine deep-water predators. Mar. Ecol. Prog. Ser. 437, 175–181 (2011).

    Article 

    Google Scholar 

  • 47.

    Rooper, C. N., Boldt, J. L. & Zimmermann, M. An assessment of juvenile Pacific Ocean perch (Sebastes alutus) habitat use in a deepwater nursery. Estuar. Coast. Shelf Sci. 75, 371–380 (2007).

    Article 

    Google Scholar 

  • 48.

    Pimiento, C., Ehret, D. J., MacFadden, B. J. & Hubbell, G. Ancient nursery area for the extinct giant shark Megalodon from the Miocene of Panama. PLoS ONE 5, e10552 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Villafaña, J. A. et al. First evidence of a palaeo-nursery area of the great white shark. Sci. Rep. 10, 8502 (2020).

  • 50.

    Paterson, J. R., Jago, J. B., Brock, G. A. & Gehling, J. G. Taphonomy and palaeoecology of the emuellid trilobite Balcoracania dailyi (early Cambrian, South Australia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 249, 302–321 (2007).

    Article 

    Google Scholar 

  • 51.

    Hartnoll, R. G. in Physiology and Behaviour of Marine Organisms (eds McLusky, D. S. & Berry, A. J.) 349–358 (Pergamon Press, 1978).

  • 52.

    Hartnoll, R. G. & Bryant, A. D. Size-frequency distributions in decapod Crustacea—the quick, the dead and the cast-offs. J. Crust. Biol. 10, 14–19 (1990).

    Article 

    Google Scholar 

  • 53.

    Sheldon, P. R. Trilobite size-frequency distributions, recognition of instars, and phyletic size changes. Lethaia 21, 293–306 (1988).

    Article 

    Google Scholar 

  • 54.

    Herrnkind, W. F. in The Biology and Management of Lobsters Vol. 1 (eds Cobb, J. S. & Phillips B. F.) 349–407 (Academic Press, 1980)

  • 55.

    Linnane, A., Dimmlich, W. & Ward, T. Movement patterns of the southern rock lobster, Jasus edwardsii, of South Australia. NZ J. Mar. Freshw. Res. 39, 335–346 (2005).

    Article 

    Google Scholar 

  • 56.

    Blazejowski, B. et al. Ancient animal migration: a case study of eyeless, dimorphic Devonian trilobites from Poland. Palaeontology 59, 743–751 (2016).

    Article 

    Google Scholar 

  • 57.

    Hughes, N. C., Kříž, J., Macquaker, J. H. S. & Huff, W. D. The depositional environment and taphonomy of the Homerian “Aulacopleura shales” fossil assemblage near Loděnice, Czech Republic (Prague Basin, Perunican microcontinent). Bull. Geosci. 89, 219–238 (2014).

    Article 

    Google Scholar 

  • 58.

    Whitaker, A. F. & Kimmig, J. Anthropologically introduced biases in natural history collections, with a case study on the invertebrate paleontology collections from the middle Cambrian Spence Shale Lagerstätte. Palaeontol. Electron. 23, a58 (2020).

    Google Scholar 

  • 59.

    Conway Morris, S. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology 29, 423–467 (1986).

    Google Scholar 

  • 60.

    Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G. & Streng, M. A new phyllopod bed-like assemblage on from the Burgess Shale of the Canadian Rockies. Nat. Commun. 5, 3210 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 61.

    Ihaka, R. R. & Gentleman, R. A language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

    Google Scholar 


  • Source: Ecology - nature.com

    Engineered yeast could expand biofuels’ reach

    Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics