Zhao, F. et al. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology 40, 50–69 (2014).
Google Scholar
Zhu, M.-Y., Zhang, J.-M. & Li, G.-X. Sedimentary environments of the early Cambrian Chengjiang biota: sedimentology of the Yu’anshan Formation in Chengjiang County, eastern Yunnan. Acta Palaeontol. Sin. 40, 80–105 (2001).
Hu, S.-X. Taphonomy and palaeoecology of the early Cambrian Chengjiang Biota from eastern Yunnan, China. Berl. Palobiologische Abhandlungen 7 (2005).
Hou, X. et al. The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life 2nd edn (John Wiley & Sons, 2017).
Zhang, W.-T. & Hou, X.-G. Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia. Acta Palaeontol. Sin. 24, 591–595 (1985).
Luo, H.-L, Hu, S.-X, Chen, L.-Z, Zhang, S.-S & Tao, Y.-H. Early Cambrian Chengjiang Fauna from Kunming Region, China (Yunnan Science and Technology Press, 1999).
Chen, J.-Y The Dawn of Animal World (Jiangsu Science and Technology Press, China, 2004).
Duan, Y. et al. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the lower Cambrian Chengjiang Lagerstätte, South China. Gondwana Res. 25, 983–990 (2014).
Google Scholar
Zhao, F.-C., Zhu, M.-Y. & Hu, S.-X. Community structure and composition of the Cambrian Chengjiang biota. Sci. China Earth Sci. 53, 1784–1799 (2010).
Google Scholar
Liu, Y. et al. Three-dimensionally preserved minute larva of a great-appendage arthropod from the early Cambrian Chengjiang biota. Proc. Natl Acad. Sci. USA 113, 5542–5546 (2016).
Google Scholar
Ou, Q. et al. Evolutionary trade-off in reproduction of Cambrian arthropods. Sci. Adv. 6, 33–76 (2020).
Dornbos, S. Q. & Chen, J.-Y. Community palaeoecology of the Early Cambrian Maotianshan Shale biota: ecological dominance of priapulid worms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 200–212 (2008).
Google Scholar
Fu, D. et al. The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 363, 1338–1342 (2019).
Google Scholar
Caron, J.-B. & Jackson, D. A. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 222–256 (2008).
Nanglu, K., Caron, J.-B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81 (2020).
Google Scholar
Gaines, R. R. in Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization Vol. 20 (eds Laflamme, M. et al.) 123–146 (Paleontological Research Institution, 2014).
Zhai, D. et al. Variation in appendages in early Cambrian bradoriids reveals a wide range of body plans in stem-euarthropods. Commun. Biol. 2, 329 (2019).
Google Scholar
Isaevaa, V. V., Ozernyukc, N. D. & Rozhnov, S. V. Evidence for evolutionary changes in ontogeny: paleontological, comparative morphological, and molecular aspects. Biol. Bull. 40, 243–252 (2013).
Google Scholar
Liu, Y., Haug, J. T., Haug, C., Briggs, D. E. G. & Hou, X.-G. A 520 million-year-old chelicerate larva. Nat. Commun. 5, 4440 (2014).
Google Scholar
Chipman, A. D. An embryological perspective on the early arthropod fossil record. BMC Evol. Biol. 15, 285 (2015).
Google Scholar
Wolfe, J. M. Metamorphosis is ancestral for crown euarthropods, and evolved in the Cambrian or earlier. Integr. Comp. Biol. 57, 499–509 (2017).
Google Scholar
Haug, T. J. Why the term “larva” is ambiguous, or what makes a larva? Acta Zool. 101, 167–188 (2018).
Google Scholar
Fu, D., Zhang, X., Budd, G. E., Liu, W. & Pan, X. Ontogeny and dimorphism of Isoxys auritus (Arthropoda) from the Early Cambrian Chengjiang biota, South China. Gondwana Res. 25, 975–982 (2014).
Google Scholar
Yang, X.-F., Kimmig, J., Lieberman, B. S. & Peng, S.-C. A new species of the deuterostome Herpetogaster from the early Cambrian Chengjiang biota of South China. Sci. Nat. 107, 37 (2020).
Google Scholar
Zhai, D. Y. et al. Fine-scale appendage structure of the Cambrian trilobitomorph Naraoia spinosa and its ontogenetic and ecological implications. Proc. R. Soc. B 286, 20192371 (2019).
Google Scholar
Hughes, N. C. et al. Articulated trilobite ontogeny: suggestions for a methodological standard. J. Paleont. 95, 298–304 (2021).
Google Scholar
Chen, J.-Y. & Zhou, G.-Q. Biology of the Chengjiang fauna. Bull. Natl Mus. Nat. Sci. 10, 11–106 (1997).
Haug, J. T., Caron, J.-B. & Haug, C. Demecology in the Cambrian: synchronized moulting in arthropods from the Burgess Shale. BMC Biol. 11, 64 (2013).
Google Scholar
Robison, R. A., Babcock, L. E. & Gunther, V. G. Exceptional Cambrian fossils from Utah: A Window into the Age of Trilobites (Utah Geological Survey, 2015).
Kimmig, J., Strotz, L. C., Kimmig, S. R., Egenhoff, S. O. & Lieberman, B. S. The Spence Shale Lagerstätte: an important window into Cambrian biodiversity. J. Geol. Soc. Lond. 176, 609–619 (2019).
Google Scholar
Paterson, J. R. et al. The Emu Bay Shale Konservat-Lagerstätte: a view of Cambrian life from East Gondwana. J. Geol. Soc. Lond. 173, 3107 (2016).
Du, K. et al. A new early Cambrian Konservat-Lagerstätte expands the occurrence of Burgess Shale-type deposits on the Yangtze Platform. Earth Sci. Rev. 211, 103409 (2020).
Google Scholar
Harper, D. A. T. et al. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian explosion. J. Geol. Soc. Lond. 176, 1023–1037 (2019).
Google Scholar
Chen, L. Z et al. Early Cambrian Chengjiang Fauna in Eastern Yunnan, China (Yunnan Science and Technology Press, 2002).
Zhao, F. C., Caron, J.-B., Hu, S. X. & Zhu, M. Y. Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstätte. PALAIOS 24, 826–839 (2009).
Google Scholar
Beck, M. K. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51, 633–641 (2001).
Google Scholar
Botton, M. L. & Loveland, R. E. Abundance and dispersal potential of horseshoe crab (Limulus polyphemus) larvae in the Delaware estuary. Estuar. Coasts 26, 1472–1479 (2003).
Google Scholar
Watson, W. H. & Chabot, C. C. High resolution tracking of adult horseshoe crabs Limulus polyphemus in a New Hampshire estuary using a fixed array ultrasonic telemetry. Curr. Zool. 56, 599–610 (2010).
Google Scholar
Perry, F. A. et al. Habitat partitioning in Antarctic krill: spawning hotspots and nursery areas. PLoS ONE 14, e0219325 (2019).
Nagelkerken, I. in Ecological Connectivity among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 357–399 (Springer, 2009).
Kanciruk, P. in The Biology and Management of Lobsters Vol. 2 (eds Cobb, J. S. & Phillips, B. F.) 59–96 (Academic Press, 1980).
Sandt, V. J. & Stoner, A. W. Ontogenetic shift in habitat by early juvenile queen conch, Strombus gigas: patterns and potential mechanisms. Fish. Bull. 91, 516–525 (1993).
Pedrotti, M. L. & Fenaux, L. Dispersal of echinoderm larvae in a geographical area marked by upwelling (Ligurian Sea, NW Mediterranean). Mar. Ecol. Prog. Ser. 87, 217–227 (1992).
Google Scholar
Zhai, D. et al. Spatial heterogeneity of the population age structure of the ostracode Limnocythere inopinata in Hulun Lake, Inner Mongolia and its implications. Hydrobiologia 716, 29–46 (2013).
Google Scholar
Baillon, S., Hamel, J. F., Wareham, V. E. & Mercier, A. Deep cold-water corals as nurseries for fish larvae. Front. Ecol. Environ. 10, 351–356 (2012).
Google Scholar
Treude, T., Kiel, S., Linke, P., Peckmann, J. & Goedert, J. Elasmobranch egg capsules associated with modern and ancient cold seeps: a nursery for marine deep-water predators. Mar. Ecol. Prog. Ser. 437, 175–181 (2011).
Google Scholar
Rooper, C. N., Boldt, J. L. & Zimmermann, M. An assessment of juvenile Pacific Ocean perch (Sebastes alutus) habitat use in a deepwater nursery. Estuar. Coast. Shelf Sci. 75, 371–380 (2007).
Google Scholar
Pimiento, C., Ehret, D. J., MacFadden, B. J. & Hubbell, G. Ancient nursery area for the extinct giant shark Megalodon from the Miocene of Panama. PLoS ONE 5, e10552 (2010).
Google Scholar
Villafaña, J. A. et al. First evidence of a palaeo-nursery area of the great white shark. Sci. Rep. 10, 8502 (2020).
Paterson, J. R., Jago, J. B., Brock, G. A. & Gehling, J. G. Taphonomy and palaeoecology of the emuellid trilobite Balcoracania dailyi (early Cambrian, South Australia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 249, 302–321 (2007).
Google Scholar
Hartnoll, R. G. in Physiology and Behaviour of Marine Organisms (eds McLusky, D. S. & Berry, A. J.) 349–358 (Pergamon Press, 1978).
Hartnoll, R. G. & Bryant, A. D. Size-frequency distributions in decapod Crustacea—the quick, the dead and the cast-offs. J. Crust. Biol. 10, 14–19 (1990).
Google Scholar
Sheldon, P. R. Trilobite size-frequency distributions, recognition of instars, and phyletic size changes. Lethaia 21, 293–306 (1988).
Google Scholar
Herrnkind, W. F. in The Biology and Management of Lobsters Vol. 1 (eds Cobb, J. S. & Phillips B. F.) 349–407 (Academic Press, 1980)
Linnane, A., Dimmlich, W. & Ward, T. Movement patterns of the southern rock lobster, Jasus edwardsii, of South Australia. NZ J. Mar. Freshw. Res. 39, 335–346 (2005).
Google Scholar
Blazejowski, B. et al. Ancient animal migration: a case study of eyeless, dimorphic Devonian trilobites from Poland. Palaeontology 59, 743–751 (2016).
Google Scholar
Hughes, N. C., Kříž, J., Macquaker, J. H. S. & Huff, W. D. The depositional environment and taphonomy of the Homerian “Aulacopleura shales” fossil assemblage near Loděnice, Czech Republic (Prague Basin, Perunican microcontinent). Bull. Geosci. 89, 219–238 (2014).
Google Scholar
Whitaker, A. F. & Kimmig, J. Anthropologically introduced biases in natural history collections, with a case study on the invertebrate paleontology collections from the middle Cambrian Spence Shale Lagerstätte. Palaeontol. Electron. 23, a58 (2020).
Conway Morris, S. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology 29, 423–467 (1986).
Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G. & Streng, M. A new phyllopod bed-like assemblage on from the Burgess Shale of the Canadian Rockies. Nat. Commun. 5, 3210 (2014).
Google Scholar
Ihaka, R. R. & Gentleman, R. A language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).
Source: Ecology - nature.com