in

Invasive Burmese pythons alter host use and virus infection in the vector of a zoonotic virus

  • 1.

    Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasions 11, 21–45 (2009).

    Article 

    Google Scholar 

  • 2.

    Kimbro, D. L. et al. Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades. Oecologia 160, 563–575 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Russell, J. C. In Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P., Anderson, W. B., Towns, D. R. & Bellingham, P. J.) Ch. 9 (Oxford Univ. Press, 2011).

  • 5.

    Allan, B. F. et al. Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc. Natl Acad. Sci. USA 107, 18523–18527 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Young, H. S., Parker, I. M., Gilbert, G. S., Guerra, A. S. & Nunn, C. L. Introduced species, disease ecology, and biodiversity–disease relationships. Trends Ecol. Evol. 32, 41–54 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Wood, C. L. et al. Does biodiversity protect humans against infectious disease? Ecology 95, 817–832 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl Acad. Sci. USA 100, 567–571 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Hamer, G. L. et al. Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission. PLoS ONE 6, e23767 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Schmidt, K. A. & Ostfeld, R. S. Biodiversity and the dilution effect in disease ecology. Ecology 82, 609–619 (2001).

    Article 

    Google Scholar 

  • 12.

    Murray, K. A. & Daszak, P. Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Curr. Opin. Virol. 3, 79–83 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl Acad. Sci. USA 109, 2418–2422 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    McCleery, R. A. et al. Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades. Proc. R. Soc. B Biol. Sci. 282, 20150120 (2015).

    Article 

    Google Scholar 

  • 15.

    Sovie, A. R., McCleery, R. A., Fletcher, R. J. & Hart, K. M. Invasive pythons, not anthropogenic stressors, explain the distribution of a keystone species. Biol. Invasions 18, 3309–3318 (2016).

    Article 

    Google Scholar 

  • 16.

    Reichert, B. E. et al. Urbanization may limit impacts of an invasive predator on native mammal diversity. Diversity Distrib. 23, 355–367 (2017).

    Article 

    Google Scholar 

  • 17.

    Willson, J. D. Indirect effects of invasive Burmese pythons on ecosystems in southern Florida. J. Appl. Ecol. 54, 1251–1258 (2017).

    Article 

    Google Scholar 

  • 18.

    Hoyer, I. J. et al. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease. Biol. Lett. 13, 20170353 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Edman, J. D. Host-feeding patterns of Florida mosquitoes (Diptera: Culicidae) VI. Culex (Melanoconion). J. Med. Entomol. 15, 521–525 (1979).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Chamberlain, R. et al. Arbovirus studies in south Florida, with emphasis on Venezuelan equine encephalomyelitis virus. Am. J. Epidem. 89, 197–210 (1969).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Lord, R. D., Calisher, C. H., Sudia, W. D. & Work, T. H. Ecological investigations of vertebrate hosts of Venezuelan equine encephalomyelitis virus in south Florida. Am. J. Trop. Med. Hyg. 22, 116–123 (1973).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Bigler, W. J. Venezuelan encephalitis antibody studies in certain Florida wildlife. Bull. Wildl. Dis. Assoc. 5, 267–270 (1969).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Bigler, W. J., Ventura, A. K., Lewis, A. L. & Ehrenkranz, N. Venezuelan equine encephalomyelitis in Florida: endemic virus circulation in native rodent populations of Everglades hammocks. Am. J. Trop. Med. Hyg. 23, 513–521 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Coffey, L. L. et al. Experimental Everglades virus infection of cotton rats (Sigmodon hispidus). Emerg. Infect. Dis. 10, 8 (2004).

    Article 

    Google Scholar 

  • 25.

    Weaver, S. C., Ferro, C., Barrera, R., Boshell, J. & Navarro, J. C. Venezuelan equine encephalitis. Ann. Rev. Entomol. 49, 141–174 (2004).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Gonzalez, S. C. Documenting changes in mammal communities in the Northern Everglades. Southeast. Naturalist. 18, 619–629 (2019).

    Article 

    Google Scholar 

  • 27.

    Weaver, S. C., Scherer, W. F., Taylor, C. A., Castello, D. A. & Cupp, E. W. Laboratory vector competence of Culex (Melanoconion) cedecei for sympatric and allopatric Venezuelan equine encephalomyelitis viruses. Am. J. Trop. Med. Hyg. 35, 619–623 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Coffey, L. L. & Weaver, S. C. Susceptibility of Ochlerotatus taeniorhynchus and Culex nigripalpus for Everglades virus. Am. J. Trop. Med. Hyg. 73, 11–16 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).

    Article 

    Google Scholar 

  • 30.

    Brownstein, J. S., Skelly, D. K., Holford, T. R. & Fish, D. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146, 469–475 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Ann. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).

    Article 

    Google Scholar 

  • 32.

    Dorcas, M. E. & Willson, J. D. In Reptiles in Research: Investigations of Ecology, Physiology, and Behavior from Desert to Sea (ed Lutterschmidt, W. I.) Ch. 19 (Nova Science Publishers, 2013).

  • 33.

    Hoyer, I. J., Acevedo, C., Wiggins, K., Alto, B. W. & Burkett-Cadena, N. D. Patterns of abundance, host use, and Everglades virus infection in Culex (Melanoconion) cedecei mosquitoes, Florida, USA. Emerg. Infect. Dis. 25, 1093 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Burkett-Cadena, N. D., Hoyer, I., Blosser, E. & Reeves, L. Human-powered pop-up resting shelter for sampling cavity-resting mosquitoes. Acta Tropica 190, 288–292 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Chandler, R. B., Engebretsen, K., Cherry, M. J., Garrison, E. P. & Miller, K. V. Estimating recruitment from capture–recapture data by modelling spatio-temporal variation in birth and age-specific survival rates. Methods Ecol. Evol. 9, 2115–2130 (2018).

    Article 

    Google Scholar 

  • 36.

    Krebs, C. J. Ecological Methodology (Harper & Row, 1989).

  • 37.

    Oksanen, J. et al. Vegan: community ecology package (R package version 1.17-4, 2010).

  • 38.

    Blosser, E. M., Stenn, T., Acevedo, C. & Burkett-Cadena, N. D. Host use and seasonality of Culex (Melanoconion) iolambdis (Diptera: Culicidae) from eastern Florida, USA. Acta Tropica 164, 352–359 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Giry, C., Roquebert, B., Li-Pat-Yuen, G., Gasque, P. & Jaffar-Bandjee, M.-C. Improved detection of genus-specific Alphavirus using a generic TaqMan® assay. BMC Microbiol. 17, 164 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Chiang, C. L. & Reeves, W. C. Statistical estimation of virus infection rates in mosquito vector populations. Am. J. Hyg. 75, 377–391 (1962).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Gu, W., Lampman, R. & Novak, R. J. Problems in estimating mosquito infection rates using minimum infection rate. J. Med. Entomol. 40, 595–596 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Biggerstaff, B. J. PooledInfRate, Version 4.0: a Microsoft Office Excel Add-In to computer prevalence estimates from pooled samples (ScienceOpen Inc., 2009).

  • 43.

    Biggerstaff, B. J. Confidence intervals for the difference of two proportions estimated from pooled samples. J. Agric. Biol. Environ. Stat. 13, 478–496 (2003).

    Article 

    Google Scholar 

  • 44.

    US Geological Survey. National Gap Analysis Program land cover data‐version 2 (2011).

  • 45.

    Hart, K. M. et al. Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3, 1–13 (2015).

    Article 

    Google Scholar 

  • 46.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity Distrib. 17, 43–57 (2011).

    Article 

    Google Scholar 

  • 47.

    Zadrozny, B. Learning and evaluating classifiers under sample selection bias. In Proc. 21st International Conference on Machine Learning. (ed. Carla Brodley) 903–910 (Association for Computing Machinery, 2004).

  • 48.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    Article 

    Google Scholar 

  • 49.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. (Springer, 2002).

  • 50.

    Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    Article 

    Google Scholar 

  • 51.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019).

  • 52.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 53.

    Spiess, A. N. & Ritz, C. qpcR: modelling and analysis of real-time PCR data (R Package Version 1.4-1, 2014).

  • 54.

    Bjornstad, O. N. ncf: spatial covariance functions. (R package Version 1.2-9, 2020).

  • 55.

    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R² and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Hess, A. D. & Swartz, A. The forage ratio and its use in determining the food grade of streams. Progr. Fish.Culturist 7, 22–23 (1940).

    Article 

    Google Scholar 

  • 57.

    Hess, A. D., Hayes, R. O. & Tempelis, C. H. The use of the forage ratio technique in mosquito host preference studies. Mosq. N. 28, 386–389 (1968).

    Google Scholar 


  • Source: Ecology - nature.com

    Engineered yeast could expand biofuels’ reach

    Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics