Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasions 11, 21–45 (2009).
Google Scholar
Kimbro, D. L. et al. Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades. Oecologia 160, 563–575 (2009).
Google Scholar
Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).
Google Scholar
Russell, J. C. In Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P., Anderson, W. B., Towns, D. R. & Bellingham, P. J.) Ch. 9 (Oxford Univ. Press, 2011).
Allan, B. F. et al. Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc. Natl Acad. Sci. USA 107, 18523–18527 (2010).
Google Scholar
Young, H. S., Parker, I. M., Gilbert, G. S., Guerra, A. S. & Nunn, C. L. Introduced species, disease ecology, and biodiversity–disease relationships. Trends Ecol. Evol. 32, 41–54 (2017).
Google Scholar
Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647 (2010).
Google Scholar
Wood, C. L. et al. Does biodiversity protect humans against infectious disease? Ecology 95, 817–832 (2014).
Google Scholar
LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl Acad. Sci. USA 100, 567–571 (2003).
Google Scholar
Hamer, G. L. et al. Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission. PLoS ONE 6, e23767 (2011).
Google Scholar
Schmidt, K. A. & Ostfeld, R. S. Biodiversity and the dilution effect in disease ecology. Ecology 82, 609–619 (2001).
Google Scholar
Murray, K. A. & Daszak, P. Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Curr. Opin. Virol. 3, 79–83 (2013).
Google Scholar
Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl Acad. Sci. USA 109, 2418–2422 (2012).
Google Scholar
McCleery, R. A. et al. Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades. Proc. R. Soc. B Biol. Sci. 282, 20150120 (2015).
Google Scholar
Sovie, A. R., McCleery, R. A., Fletcher, R. J. & Hart, K. M. Invasive pythons, not anthropogenic stressors, explain the distribution of a keystone species. Biol. Invasions 18, 3309–3318 (2016).
Google Scholar
Reichert, B. E. et al. Urbanization may limit impacts of an invasive predator on native mammal diversity. Diversity Distrib. 23, 355–367 (2017).
Google Scholar
Willson, J. D. Indirect effects of invasive Burmese pythons on ecosystems in southern Florida. J. Appl. Ecol. 54, 1251–1258 (2017).
Google Scholar
Hoyer, I. J. et al. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease. Biol. Lett. 13, 20170353 (2017).
Google Scholar
Edman, J. D. Host-feeding patterns of Florida mosquitoes (Diptera: Culicidae) VI. Culex (Melanoconion). J. Med. Entomol. 15, 521–525 (1979).
Google Scholar
Chamberlain, R. et al. Arbovirus studies in south Florida, with emphasis on Venezuelan equine encephalomyelitis virus. Am. J. Epidem. 89, 197–210 (1969).
Google Scholar
Lord, R. D., Calisher, C. H., Sudia, W. D. & Work, T. H. Ecological investigations of vertebrate hosts of Venezuelan equine encephalomyelitis virus in south Florida. Am. J. Trop. Med. Hyg. 22, 116–123 (1973).
Google Scholar
Bigler, W. J. Venezuelan encephalitis antibody studies in certain Florida wildlife. Bull. Wildl. Dis. Assoc. 5, 267–270 (1969).
Google Scholar
Bigler, W. J., Ventura, A. K., Lewis, A. L. & Ehrenkranz, N. Venezuelan equine encephalomyelitis in Florida: endemic virus circulation in native rodent populations of Everglades hammocks. Am. J. Trop. Med. Hyg. 23, 513–521 (1974).
Google Scholar
Coffey, L. L. et al. Experimental Everglades virus infection of cotton rats (Sigmodon hispidus). Emerg. Infect. Dis. 10, 8 (2004).
Google Scholar
Weaver, S. C., Ferro, C., Barrera, R., Boshell, J. & Navarro, J. C. Venezuelan equine encephalitis. Ann. Rev. Entomol. 49, 141–174 (2004).
Google Scholar
Gonzalez, S. C. Documenting changes in mammal communities in the Northern Everglades. Southeast. Naturalist. 18, 619–629 (2019).
Google Scholar
Weaver, S. C., Scherer, W. F., Taylor, C. A., Castello, D. A. & Cupp, E. W. Laboratory vector competence of Culex (Melanoconion) cedecei for sympatric and allopatric Venezuelan equine encephalomyelitis viruses. Am. J. Trop. Med. Hyg. 35, 619–623 (1986).
Google Scholar
Coffey, L. L. & Weaver, S. C. Susceptibility of Ochlerotatus taeniorhynchus and Culex nigripalpus for Everglades virus. Am. J. Trop. Med. Hyg. 73, 11–16 (2005).
Google Scholar
Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).
Google Scholar
Brownstein, J. S., Skelly, D. K., Holford, T. R. & Fish, D. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146, 469–475 (2005).
Google Scholar
Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Ann. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
Google Scholar
Dorcas, M. E. & Willson, J. D. In Reptiles in Research: Investigations of Ecology, Physiology, and Behavior from Desert to Sea (ed Lutterschmidt, W. I.) Ch. 19 (Nova Science Publishers, 2013).
Hoyer, I. J., Acevedo, C., Wiggins, K., Alto, B. W. & Burkett-Cadena, N. D. Patterns of abundance, host use, and Everglades virus infection in Culex (Melanoconion) cedecei mosquitoes, Florida, USA. Emerg. Infect. Dis. 25, 1093 (2019).
Google Scholar
Burkett-Cadena, N. D., Hoyer, I., Blosser, E. & Reeves, L. Human-powered pop-up resting shelter for sampling cavity-resting mosquitoes. Acta Tropica 190, 288–292 (2019).
Google Scholar
Chandler, R. B., Engebretsen, K., Cherry, M. J., Garrison, E. P. & Miller, K. V. Estimating recruitment from capture–recapture data by modelling spatio-temporal variation in birth and age-specific survival rates. Methods Ecol. Evol. 9, 2115–2130 (2018).
Google Scholar
Krebs, C. J. Ecological Methodology (Harper & Row, 1989).
Oksanen, J. et al. Vegan: community ecology package (R package version 1.17-4, 2010).
Blosser, E. M., Stenn, T., Acevedo, C. & Burkett-Cadena, N. D. Host use and seasonality of Culex (Melanoconion) iolambdis (Diptera: Culicidae) from eastern Florida, USA. Acta Tropica 164, 352–359 (2016).
Google Scholar
Giry, C., Roquebert, B., Li-Pat-Yuen, G., Gasque, P. & Jaffar-Bandjee, M.-C. Improved detection of genus-specific Alphavirus using a generic TaqMan® assay. BMC Microbiol. 17, 164 (2017).
Google Scholar
Chiang, C. L. & Reeves, W. C. Statistical estimation of virus infection rates in mosquito vector populations. Am. J. Hyg. 75, 377–391 (1962).
Google Scholar
Gu, W., Lampman, R. & Novak, R. J. Problems in estimating mosquito infection rates using minimum infection rate. J. Med. Entomol. 40, 595–596 (2003).
Google Scholar
Biggerstaff, B. J. PooledInfRate, Version 4.0: a Microsoft Office Excel Add-In to computer prevalence estimates from pooled samples (ScienceOpen Inc., 2009).
Biggerstaff, B. J. Confidence intervals for the difference of two proportions estimated from pooled samples. J. Agric. Biol. Environ. Stat. 13, 478–496 (2003).
Google Scholar
US Geological Survey. National Gap Analysis Program land cover data‐version 2 (2011).
Hart, K. M. et al. Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3, 1–13 (2015).
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity Distrib. 17, 43–57 (2011).
Google Scholar
Zadrozny, B. Learning and evaluating classifiers under sample selection bias. In Proc. 21st International Conference on Machine Learning. (ed. Carla Brodley) 903–910 (Association for Computing Machinery, 2004).
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. (Springer, 2002).
Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).
Google Scholar
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).
Google Scholar
Spiess, A. N. & Ritz, C. qpcR: modelling and analysis of real-time PCR data (R Package Version 1.4-1, 2014).
Bjornstad, O. N. ncf: spatial covariance functions. (R package Version 1.2-9, 2020).
Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R² and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).
Google Scholar
Hess, A. D. & Swartz, A. The forage ratio and its use in determining the food grade of streams. Progr. Fish.Culturist 7, 22–23 (1940).
Google Scholar
Hess, A. D., Hayes, R. O. & Tempelis, C. H. The use of the forage ratio technique in mosquito host preference studies. Mosq. N. 28, 386–389 (1968).
Source: Ecology - nature.com