Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems: Ecological impacts of invasive alien plants. Ecol. Lett. 14, 702–708 (2011).
Google Scholar
Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737 (2012).
Google Scholar
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).
Google Scholar
Gordon, D. R. Effects of invasive, non-indigenous plant species on ecosystem processes: Lessons from Florida. Ecol. Appl. 8, 975–989 (1998).
Google Scholar
Vieites-Blanco, C. & González-Prieto, S. J. Effects of Carpobrotus edulis invasion on soil gross N fluxes in rocky coastal habitats. Sci. Total Environ. 619–620, 966–976 (2018).
Google Scholar
Loiola, P. P. et al. Invaders among locals: Alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).
Google Scholar
de la Riva, E. G., Godoy, O., Castro-Díez, P., Gutiérrez-Cánovas, C. & Vilà, M. Functional and phylogenetic consequences of plant invasion for coastal native communities. J. Veg. Sci. 30, 510–520 (2019).
Google Scholar
Ordonez, A. Functional and phylogenetic similarity of alien plants to co-occurring natives. Ecology 95, 1191–1202 (2014).
Google Scholar
Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O. & der Bank, M. V. Revisiting Darwin’s naturalization conundrum: Explaining invasion success of non-native trees and shrubs in southern Africa. J. Ecol. 103, 871–879 (2015).
Google Scholar
Li, S. et al. The effects of phylogenetic relatedness on invasion success and impact: Deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).
Google Scholar
Carboni, M. et al. What it takes to invade grassland ecosystems: Traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2016).
Google Scholar
Cadotte, M. W., Campbell, S. E., Li, S., Sodhi, D. S. & Mandrak, N. E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 69, 661–684 (2018).
Google Scholar
Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G. & Duncan, R. P. Darwin’s naturalization conundrum: Dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674–681 (2008).
Google Scholar
Ma, C. et al. Different effects of invader–native phylogenetic relatedness on invasion success and impact: A meta-analysis of Darwin’s naturalization hypothesis. Proc. R. Society B: Biological Sciences 283, 20160663 (2016).
Google Scholar
Bennett, J. A. Similarities between invaders and native species: Moving past Darwin’s naturalization conundrum. J. Veg. Sci. 30, 1027–1034 (2019).
Google Scholar
Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97, 75–83 (2016).
Google Scholar
Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001).
Google Scholar
Duncan, R. P. & Williams, P. A. Ecology: Darwin’s naturalization hypothesis challenged. Nature 417, 608 (2002).
Google Scholar
Ferreira, R. B., Beard, K. H., Peterson, S. L., Poessel, S. A. & Callahan, C. M. Establishment of introduced reptiles increases with the presence and richness of native congeners. Amphibia-Reptilia 33, 387–392 (2012).
Google Scholar
Allen, C. R. et al. Predictors of regional establishment success and spread of introduced non-indigenous vertebrates. Glob. Ecol. Biogeogr. 22, 889–899 (2013).
Google Scholar
Maitner, B. S., Rudgers, J. A., Dunham, A. E. & Whitney, K. D. Patterns of bird invasion are consistent with environmental filtering. Ecography 35, 614–623 (2012).
Google Scholar
Park, D. S. & Potter, D. Why close relatives make bad neighbours: Phylogenetic conservatism in niche preferences and dispersal disproves Darwin’s naturalization hypothesis in the thistle tribe. Mol. Ecol. 24, 3181–3193 (2015).
Google Scholar
Park, D. S. & Potter, D. A reciprocal test of Darwin’s naturalization hypothesis in two mediterranean-climate regions. Glob. Ecol. Biogeogr. 24, 1049–1058 (2015).
Google Scholar
Kembel, S. W. & Hubbell, S. P. The phylogenetic structure of a neotropical forest tree community. Ecology 87, S86–S99 (2006).
Google Scholar
Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).
Google Scholar
Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).
Google Scholar
Funk, J. L., Cleland, E. E., Suding, K. N. & Zavaleta, E. S. Restoration through reassembly: Plant traits and invasion resistance. Trends Ecol. Evol. 23, 695–703 (2008).
Google Scholar
Lapiedra, O., Sol, D., Traveset, A. & Vilà, M. Random processes and phylogenetic loss caused by plant invasions. Glob. Ecol. Biogeogr. 24, 774–785 (2015).
Google Scholar
Castro-Díez, P., Pauchard, A., Traveset, A. & Vilà, M. Linking the impacts of plant invasion on community functional structure and ecosystem properties. J. Veg. Sci. 27, 1233–1242 (2016).
Google Scholar
Hulme, P. E. & Bernard-Verdier, M. Evaluating differences in the shape of native and alien plant trait distributions will bring new insights into invasions of plant communities. J. Veg. Sci. 29, 348–355 (2018).
Google Scholar
Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities: Phylogeny and coexistence. Ecol. Lett. 13, 1085–1093 (2010).
Google Scholar
de Bello, F. et al. Functional species pool framework to test for biotic effects on community assembly. Ecology 93, 2263–2273 (2012).
Google Scholar
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Google Scholar
Kunstler, G. et al. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecol. Lett. 15, 831–840 (2012).
Google Scholar
Gallien, L. et al. Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biol. Invasions 17, 1407–1423 (2015).
Google Scholar
Gallien, L. & Carboni, M. The community ecology of invasive species: Where are we and what’s next?. Ecography 40, 335–352 (2017).
Google Scholar
Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19 (1999).
Google Scholar
Byers, J. E. et al. Directing research to reduce the impacts of nonindigenous species. Conserv. Biol. 16, 630–640 (2002).
Google Scholar
Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).
Google Scholar
Pyšek, P. & Pyšek, A. Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J. Veg. Sci. 6, 711–718 (1995).
Google Scholar
Hejda, M. & Pyšek, P. What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation?. Biol. Conserv. 132, 143–152 (2006).
Google Scholar
Chmura, D. et al. The influence of invasive Fallopia taxa on resident plant species in two river valleys (southern Poland). Acta Soc. Bot. Pol. 84, 23–33 (2015).
Google Scholar
MacDougall, A. S., Gilbert, B. & Levine, J. M. Plant invasions and the niche. J. Ecol. 97, 609–615 (2009).
Google Scholar
Li, S. et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52, 89–99 (2015).
Google Scholar
Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).
Google Scholar
Abrams, P. The theory of limiting similarity. Annu. Rev. Ecol. Syst. 14, 359–376 (1983).
Google Scholar
Davies, T. J. Evolutionary ecology: When relatives cannot live together. Evol. Ecol. 16, R645–R647 (2006).
Google Scholar
Omar Kariem, A. Eco-geographical analysis on mountain plants—Kariem Omar—Livres spécialisés. Africa Vivre. https://www.laboutiqueafricavivre.com/livres-specialises/156599-eco-geographical-analysis-on-mountain-plants-9783847331537.html (2012).
Omar Karim A. Extinction—Towards Plant Conservation. (Lap Lambert Academic Publ, 2014).
Klute, A. Water retention: Laboratory methods. In: (ed. Klute, A.) Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, ASA and SSSA, Madison, 635–662. https://doi.org/10.2136/sssabookser5.1.2ed. (1986)
Google Scholar
Allen, S. E., Grimshaw, H. M., Parkinson, J. A. & Quarmby, C. Chemical Analysis of Ecological Materials. (Blackwell Scientific Publications, 1974).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Google Scholar
Pérez-Harguindeguy, N. et al. New handbook for stand-ardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).
Google Scholar
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 33, D34-38 (2005).
Google Scholar
Kück, P. & Meusemann, K. FASconCAT: Convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118 (2010).
Google Scholar
Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).
Google Scholar
Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).
Google Scholar
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).
Google Scholar
Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002).
Google Scholar
Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Google Scholar
Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
Google Scholar
Veron, S., Davies, T. J., Cadotte, M. W., Clergeau, P. & Pavoine, S. Predicting loss of evolutionary history: Where are we?. Biol. Rev. 92, 271–291 (2017).
Google Scholar
Swenson, N. Functional and Phylogenetic Ecology in R. (Springer, 2014). https://doi.org/10.1007/978-1-4614-9542-0.
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
Google Scholar
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
Google Scholar
Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).
Google Scholar
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
Google Scholar
Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).
Google Scholar
Carboni, M. et al. Functional traits modulate the response of alien plants along abiotic and biotic gradients. Glob. Ecol. Biogeogr. 27, 1173–1185 (2018).
Google Scholar
Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).
Google Scholar
Oksanen, J. et al. Vegan: community ecology package. R Package version 2.4-1. https://cran.r-project.org (2016).
Vila, M. et al. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J. Biogeogr. 33, 853–861 (2006).
Google Scholar
Dong, L.-J., Yu, H.-W. & He, W.-M. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness? Sci Rep. 5(1), 1–9 (2015).
Google Scholar
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
Google Scholar
Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).
Google Scholar
Jucker, T., Carboni, M. & Acosta, A. T. R. Going beyond taxonomic diversity: deconstructing biodiversity patterns reveals the true cost of iceplant invasion. Divers. Distrib. 19, 1566–1577 (2013).
Google Scholar
Prinzing, A. et al. Less lineages—More trait variation: Phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11, 809–819 (2008).
Google Scholar
Blonder, B. Do hypervolumes have holes?. Am. Nat. 187, E93–E105 (2016).
Google Scholar
Levine, J. M. & D’Antonio, C. M. Elton revisited: A review of evidence linking diversity and invasibility. Oikos 87, 15–26 (1999).
Google Scholar
Fargione, J., Brown, C. S. & Tilman, D. Community assembly and invasion: An experimental test of neutral versus niche processes. PNAS 100, 8916–8920 (2003).
Google Scholar
Zavaleta, E. S. & Hulvey, K. B. Realistic variation in species composition affects grassland production, resource use and invasion resistance. Plant Ecol 188, 39–51 (2007).
Google Scholar
Case, T. J. Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Natl. Acad. Sci. 87, 9610–9614 (1990).
Google Scholar
Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636 (2002).
Google Scholar
Gerhold, P. et al. Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives. Am. Nat. 177, 668–680 (2011).
Google Scholar
de Bello, F. et al. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods Ecol. Evol. 8, 1200–1211 (2017).
Google Scholar
Cadotte, M. W., Carboni, M., Si, X. & Tatsumi, S. Do traits and phylogeny support congruent community diversity patterns and assembly inferences?. J. Ecol. 107, 2065–2077 (2019).
Google Scholar
Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015).
Google Scholar
Hulme, P. E. & Bernard-Verdier, M. Comparing traits of native and alien plants: Can we do better?. Funct. Ecol. 32, 117–125 (2018).
Google Scholar
Luo, Y.-H. et al. Trait-based community assembly along an elevational gradient in subalpine forests: Quantifying the roles of environmental factors in inter- and intraspecific variability. PLoS One 11, e0155749 (2016).
Google Scholar
Luo, Y.-H. et al. Forest community assembly is driven by different strata-dependent mechanisms along an elevational gradient. J. Biogeogr. 46, 2174–2187 (2019).
Google Scholar
Jakobs, G., Weber, E. & Edwards, P. J. Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Divers. Distrib. 10, 11–19 (2004).
Google Scholar
Chmura, D. & Sierka, E. The invasibility of deciduous forest communities after disturbance: A case study of Carex brizoides and Impatiens parviflora invasion. For. Ecol. Manag. 242, 487–495 (2007).
Google Scholar
Szymura, M. & Szymura, T. H. The dynamics of growth and flowering of invasive Solidago species. Steciana 19, 143–152 (2015).
Google Scholar
Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).
Google Scholar
Czarniecka-Wiera, M., Kącki, Z., Chytrý, M. & Palpurina, S. Diversity loss in grasslands due to the increasing dominance of alien and native competitive herbs. Biodivers. Conserv. https://doi.org/10.1007/s10531-019-01794-9 (2019).
Google Scholar
Tilman, D. Species richness of experimental productivity gradients: How important is colonization limitation?. Ecology 74, 2179–2191 (1993).
Google Scholar
Burke, M. J. W. & Grime, J. P. An experimental study of plant community invasibility. Ecology 77, 776–790 (1996).
Google Scholar
Naeem, S. et al. Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91, 97–108 (2000).
Google Scholar
Berger, S., Söhlke, G., Walther, G.-R. & Pott, R. Bioclimatic limits and range shifts of cold-hardy evergreen broad-leaved species at their northern distributional limit in Europe. Phytocoenologia 37, 523–539 (2007).
Google Scholar
El-Barougy, R. F. et al. Functional similarity and dissimilarity facilitate alien plant invasiveness along biotic and abiotic gradients in an arid protected area. Biol. Invasions 22, 1997–2016 (2020).
Google Scholar
Ordonez, A., Wright, I. J. & Olff, H. Functional differences between native and alien species: A global-scale comparison: Functional differences of native and alien plants. Funct. Ecol. 24, 1353–1361 (2010).
Google Scholar
Godoy, O. & Levine, J. M. Phenology effects on invasion success: Insights from coupling field experiments to coexistence theory. Ecology 95, 726–736 (2014).
Google Scholar
Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian Oak Communities. Am. Nat. 163, 823–843 (2004).
Google Scholar
Richardson, D. M. & Pyšek, P. Plant invasions: Merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409–431 (2006).
Google Scholar
Pyšek, P., Prach, K. & Smilauer, P. Relating invasion success to plant traits: An analysis of the Czech alien flora. Plant Invasions Gen. Aspects Spec. Probl. 39–60 (1995).
Pyšek, P. et al. Alien plants in temperate weed communities: Prehistoric and recent invaders occupy different habitats. Ecology 86, 772–785 (2005).
Google Scholar
Prinzing, A., Durka, W., Klotz, S. & Brandl, R. Which species become aliens?. Evol. Ecol. Res. 4, 385–405 (2002).
van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).
Google Scholar
Jauni, M. & Hyvönen, T. Interactions between alien plant species traits and habitat characteristics in agricultural landscapes in Finland. Biol. Invasions 14, 47–63 (2012).
Google Scholar
Nentwig, W., Kühnel, E. & Bacher, S. A generic impact-scoring system applied to alien mammals in Europe. Conserv. Biol. 24, 302–311 (2010).
Google Scholar
Liu, P. et al. Urbanization increases biotic homogenization of zooplankton communities in tropical reservoirs. Ecol. Indic. 110, 105899 (2020).
Google Scholar
Source: Ecology - nature.com