Evans, D. L. & Schmidt, J. O. Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators (State University of New York Press, Albany, 1990).
Callow, L. L. Sawfly poisoning in cattle. Queensl. Agric. J. 81, 155–161 (1955).
Oelrichs, P. B., MacLeod, J. K. & Williams, D. H. Lophyrotomin a new hepatotoxic octapeptide from sawfly larvae Lophyrotoma interrupta. Toxicon 21(Suppl.3), 321–323 (1983).
Google Scholar
Oelrichs, P. B. et al. Unique toxic peptides isolated from sawfly larvae in three continents. Toxicon 37, 537–544 (1999).
Google Scholar
Dutra, F., Riet-Correa, F., Mendez, M. C. & Paiva, N. Poisoning of cattle and sheep in Uruguay by sawfly (Perreyia flavipes) larvae. Vet. Hum. Toxicol. 39, 281–286 (1997).
Google Scholar
Kannan, R., Oelrichs, P. B., Thamsborg, S. M. & Williams, D. H. Identification of the octapeptide lophyrotomin in the European birch sawfly (Arge pullata). Toxicon 26, 224–226 (1988).
Google Scholar
Tessele, B., Brum, J. S., Schild, A. L., Soares, M. P. & Barros, C. S. L. Sawfly larval poisoning in cattle: Report on new outbreaks and brief review of the literature. Pesqui. Vet. Bras. 32, 1095–1102 (2012).
Google Scholar
Wouters, A. T. B. et al. Brain lesions associated with acute toxic hepatopathy in cattle. J. Vet. Diagn. Investig. 29, 287–292 (2017).
Google Scholar
Boevé, J.-L., Rozenberg, R., Shinohara, A. & Schmidt, S. Toxic peptides occur frequently in pergid and argid sawfly larvae. PLoS One 9(8), e105301 (2014).
Google Scholar
Boevé, J.-L., Nyman, T., Shinohara, A. & Schmidt, S. Endogenous toxins and the coupling of gregariousness to conspicuousness in Argidae and Pergidae sawflies. Sci. Rep. 8, 17636 (2018).
Google Scholar
Boevé, J.-L. & Rozenberg, R. Body distribution of toxic peptides in larvae of a pergid and an argid sawfly species. Sci. Nat. 107, 1 (2020).
Google Scholar
Maxwell, D. E. The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta). Can. Entomol. 87, 1–132 (1955).
Google Scholar
Morrow, P. A., Bellas, T. E. & Eisner, T. Eucalyptus oils in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae). Oecologia 24, 193–206 (1976).
Google Scholar
Schmidt, S., McKinnon, A. E., Moore, C. J. & Walter, G. H. Chemical detoxification vs mechanical removal of host plant toxins in Eucalyptus feeding sawfly larvae (Hymenoptera: Pergidae). J. Insect Physiol. 56, 1770–1776 (2010).
Google Scholar
Lorenz, H. & Kraus, M. Die Larvalsystematik der Blattwespen (Tenthredinoidea und Megalodontoidea) (Akademie-Verlag, Berlin, 1957).
Schmidt, S., Walter, G. H., Grigg, J. & Moore, C. J. Sexual communication and host plant associations of Australian pergid sawflies (Hymenoptera: Symphyta: Pergidae). In Recent Sawfly Research: Synthesis and Prospects (eds Blank, S. M. et al.) 173–193 (Goecke & Evers, Krefeld, 2006).
Petre, C.-A., Detrain, C. & Boevé, J.-L. Anti-predator defence mechanisms in sawfly larvae of Arge (Hymenoptera, Argidae). J. Insect Physiol. 53, 668–675 (2007).
Google Scholar
Boevé, J.-L., Marín-Armijos, D. S., Domínguez, D. F. & Smith, D. R. Sawflies (Hymenoptera: Argidae, Pergidae, Tenthredinidae) from southern Ecuador, with a new record for the country and some ecological data. J. Hymenopt. Res. 51, 55–89 (2016).
Google Scholar
Shinohara, A., Hara, H. & Kim, J. The species-group of Arge captiva (Insecta, Hymenoptera, Argidae). Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 35, 249–278 (2009).
Hara, H. & Shinohara, A. Arge enkianthus n. sp. (Hymenoptera, Argidae) feeding on Enkianthus campanulatus in Japan. Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 38, 21–32 (2012).
Shinohara, A., Kojima, H. & Hara, H. New host plant records and life history notes on Spinarge flavicostalis (Hymenoptera: Argidae) in Japan. Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 39, 185–191 (2013).
Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack. The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry (Oxford University Press, Oxford, 2004).
Google Scholar
Boevé, J.-L., Blank, S. M., Meijer, G. & Nyman, T. Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies. BMC Evol. Biol. 13, 198 (2013).
Google Scholar
Benson, R. B. An introduction to the natural history of British sawflies. Trans. Soc. Br. Entomol. 10, 45–142 (1950).
Codella, S. G. & Raffa, K. F. Defense strategies of folivorous sawflies. In Sawfly Life History Adaptations to Woody Plants (eds Wagner, M. & Raffa, K. F.) 261–294 (Academic Press, Cambridge, 1993).
Schwerdtfeger, F. Untersuchungen über die Wirkung von Ameisen-Ansiedlungen auf die Dichte der Kleinen Fichtenblattwespe. Z. Angew. Entomol. 66, 187–206 (1970).
Woodman, R. L. & Price, P. W. Differential larval predation by ants can influence willow sawfly community structure. Ecology 73, 1028–1037 (1992).
Google Scholar
Boevé, J.-L. & Schaffner, U. Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134, 104–111 (2003).
Google Scholar
Dettner, K. Toxins, defensive compounds and drugs from insects. In Insect Molecular Biology and Ecology (ed. Hoffmann, K. H.) 39–93 (Taylor & Francis, Boca Raton, 2015).
Taeger, A., Blank, S. M. & Liston, A. D. World Catalog of Symphyta (Hymenoptera). Zootaxa 2580, 1–1064 (2010).
Google Scholar
Boevé, J.-L. & Rozenberg, R. Berberis sawfly contains toxic peptides not only at larval stage. Sci. Nat. 106, 14 (2019).
Google Scholar
Schoenly, K. The predators of insects. Ecol. Entomol. 15, 333–345 (1990).
Google Scholar
Way, M. J. & Khoo, K. C. Role of ants in pest managment. Annu. Rev. Entomol. 37, 479–503 (1992).
Google Scholar
Dyer, L. A. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata. J. Insect Sci. 2, 18 (2002).
Google Scholar
Jervis, M. & Kidd, N. Insect Natural Enemies. Practical Approaches to their Study and Evaluation (Chapman & Hall, London, 1996).
Google Scholar
Philpott, S. M., Greenberg, R., Bichier, P. & Perfecto, I. Impacts of major predators on tropical agroforest arthropods: Comparisons within and across taxa. Oecologia 140, 140–149 (2004).
Google Scholar
Rosumek, F. B. et al. Ants on plants: A meta-analysis of the role of ants as plant biotic defenses. Oecologia 160, 537–549 (2009).
Google Scholar
Fittkau, E. J. & Klinge, H. On biomass and trophic structure of the Central Amazonian rain forest ecosystem. Biotropica 5, 2–14 (1973).
Google Scholar
Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Harvard, 1990).
Google Scholar
Ryder Wilkie, K. T., Mertl, A. L. & Traniello, J. F. A. Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS One 5, e13146 (2010).
Google Scholar
Wills, B. D. & Landis, D. A. The role of ants in north temperate grasslands: A review. Oecologia 186, 323–338 (2018).
Google Scholar
Pasteels, J. M., Grégoire, J.-C. & Rowell-Rahier, M. The chemical ecology of defense in arthropods. Annu. Rev. Entomol. 28, 263–289 (1983).
Google Scholar
Whitman, D. W., Blum, M. R. & Alsop, D. W. Allomones: Chemicals for defense. In Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 289–351 (State University of New York Press, Albany, 1990).
Eisner, T., Eisner, M. & Siegler, M. Secret Weapons: Defenses of Insects, Spiders, Scorpions, and other Many-Legged Creatures (Harvard University Press, Harvard, 2005).
Morton, T. C. & Vencl, F. V. Larval beetles form a defense from recycled host-plant chemicals discharged as fecal wastes. J. Chem. Ecol. 24, 765–785 (1998).
Google Scholar
Zhang, S. et al. A novel property of spider silk: Chemical defence against ants. Proc. R. Soc. B Biol. Sci. 279, 1824–1830 (2011).
Google Scholar
Hilker, M. Protective devices of early developmental stages in Pyrrhalta viburni (Coleoptera, Chrysomelidae). Oecologia 92, 71–75 (1992).
Google Scholar
Gross, J., Eben, A., Müller, I. & Wensing, A. A well protected intruder: The effective antimicrobial defense of the invasive ladybird Harmonia axyridis. J. Chem. Ecol. 36, 1180–1188 (2010).
Google Scholar
Gentry, G. L. & Dyer, L. A. On the conditional nature of Neotropical caterpillar defenses against their natural enemies. Ecology 83, 3108–3119 (2009).
Google Scholar
Rojas, B. et al. How to fight multiple enemies: Target-specific chemical defences in an aposematic moth. Proc. R. Soc. B Biol. Sci. 284, 20171424 (2017).
Google Scholar
Boevé, J.-L. & Pasteels, J. M. Modes of defense in nematine sawfly larvae. Efficiency against ants and birds. J. Chem. Ecol. 11, 1019–1036 (1985).
Google Scholar
Schaffner, U., Boevé, J.-L., Gfeller, H. & Schlunegger, U. P. Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J. Chem. Ecol. 20, 3233–3250 (1994).
Google Scholar
Boevé, J.-L. Some sawfly larvae survive predator-prey interactions with pentatomid Picromerus bidens. Sci. Nat. 108, 8 (2021).
Google Scholar
Remmel, T., Davison, J. & Tammaru, T. Quantifying predation on folivorous insect larvae: The perspective of life-history evolution. Biol. J. Linn. Soc. 104, 1–18 (2011).
Google Scholar
Verhaagh, M. „Parasitierung” einer Ameisen-Pflanzen-Symbiose in neotropischen Regenwald? Carolinea 46, 150 (1988).
Boevé, J.-L. & Heilporn, S. Secretion of the ventral glands in Craesus sawfly larvae. Biochem. Syst. Ecol. 36, 836–841 (2008).
Google Scholar
Aili, S. R. et al. Diversity of peptide toxins from stinging ant venoms. Toxicon 92, 166–178 (2014).
Google Scholar
Boevé, J.-L. & Müller, C. Defence effectiveness of easy bleeding sawfly larvae towards invertebrate and avian predators. Chemoecology 15, 51–58 (2005).
Google Scholar
Chevin, H. Notes sur les Hyménoptères Tenthredoides. 2. Identification des larves d’Arge pagana (Panz.) et d’Arge ochropa (Gmel.). Bull. Mens. la Société Linnéenne Lyon 1, 2–5 (1972).
Google Scholar
Schmidt, S. & Smith, D. R. Pergidae of the World – An online catalogue of the sawfly family Pergidae (Insecta, Hymenoptera, Symphyta). World Wide Web electronic publication (2018). Available at: http://pergidae.snsb-zsm.de. (Accessed: 25th July 2016)
Olofsson, E. Predation by Formica polyctena Förster (Hym., Formicidae) on newly emerged larvae of Neodiprion sertifer (Geoffroy) (Hym., Diprionidae). J. Appl. Entomol. 114, 315–319 (1992).
Google Scholar
Hughes, L., Westoby, M. & Jurado, E. Convergence of elaiosomes and insect prey: Evidence from ant foraging behaviour and fatty acid composition. Funct. Ecol. 8, 358–365 (1994).
Google Scholar
Source: Ecology - nature.com