in

Behavior and body size modulate the defense of toxin-containing sawfly larvae against ants

  • 1.

    Evans, D. L. & Schmidt, J. O. Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators (State University of New York Press, Albany, 1990).

    Google Scholar 

  • 2.

    Callow, L. L. Sawfly poisoning in cattle. Queensl. Agric. J. 81, 155–161 (1955).

    Google Scholar 

  • 3.

    Oelrichs, P. B., MacLeod, J. K. & Williams, D. H. Lophyrotomin a new hepatotoxic octapeptide from sawfly larvae Lophyrotoma interrupta. Toxicon 21(Suppl.3), 321–323 (1983).

    Article 

    Google Scholar 

  • 4.

    Oelrichs, P. B. et al. Unique toxic peptides isolated from sawfly larvae in three continents. Toxicon 37, 537–544 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Dutra, F., Riet-Correa, F., Mendez, M. C. & Paiva, N. Poisoning of cattle and sheep in Uruguay by sawfly (Perreyia flavipes) larvae. Vet. Hum. Toxicol. 39, 281–286 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Kannan, R., Oelrichs, P. B., Thamsborg, S. M. & Williams, D. H. Identification of the octapeptide lophyrotomin in the European birch sawfly (Arge pullata). Toxicon 26, 224–226 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Tessele, B., Brum, J. S., Schild, A. L., Soares, M. P. & Barros, C. S. L. Sawfly larval poisoning in cattle: Report on new outbreaks and brief review of the literature. Pesqui. Vet. Bras. 32, 1095–1102 (2012).

    Article 

    Google Scholar 

  • 8.

    Wouters, A. T. B. et al. Brain lesions associated with acute toxic hepatopathy in cattle. J. Vet. Diagn. Investig. 29, 287–292 (2017).

    Article 

    Google Scholar 

  • 9.

    Boevé, J.-L., Rozenberg, R., Shinohara, A. & Schmidt, S. Toxic peptides occur frequently in pergid and argid sawfly larvae. PLoS One 9(8), e105301 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 10.

    Boevé, J.-L., Nyman, T., Shinohara, A. & Schmidt, S. Endogenous toxins and the coupling of gregariousness to conspicuousness in Argidae and Pergidae sawflies. Sci. Rep. 8, 17636 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 11.

    Boevé, J.-L. & Rozenberg, R. Body distribution of toxic peptides in larvae of a pergid and an argid sawfly species. Sci. Nat. 107, 1 (2020).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Maxwell, D. E. The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta). Can. Entomol. 87, 1–132 (1955).

    Article 

    Google Scholar 

  • 13.

    Morrow, P. A., Bellas, T. E. & Eisner, T. Eucalyptus oils in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae). Oecologia 24, 193–206 (1976).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 14.

    Schmidt, S., McKinnon, A. E., Moore, C. J. & Walter, G. H. Chemical detoxification vs mechanical removal of host plant toxins in Eucalyptus feeding sawfly larvae (Hymenoptera: Pergidae). J. Insect Physiol. 56, 1770–1776 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Lorenz, H. & Kraus, M. Die Larvalsystematik der Blattwespen (Tenthredinoidea und Megalodontoidea) (Akademie-Verlag, Berlin, 1957).

    Google Scholar 

  • 16.

    Schmidt, S., Walter, G. H., Grigg, J. & Moore, C. J. Sexual communication and host plant associations of Australian pergid sawflies (Hymenoptera: Symphyta: Pergidae). In Recent Sawfly Research: Synthesis and Prospects (eds Blank, S. M. et al.) 173–193 (Goecke & Evers, Krefeld, 2006).

    Google Scholar 

  • 17.

    Petre, C.-A., Detrain, C. & Boevé, J.-L. Anti-predator defence mechanisms in sawfly larvae of Arge (Hymenoptera, Argidae). J. Insect Physiol. 53, 668–675 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Boevé, J.-L., Marín-Armijos, D. S., Domínguez, D. F. & Smith, D. R. Sawflies (Hymenoptera: Argidae, Pergidae, Tenthredinidae) from southern Ecuador, with a new record for the country and some ecological data. J. Hymenopt. Res. 51, 55–89 (2016).

    Article 

    Google Scholar 

  • 19.

    Shinohara, A., Hara, H. & Kim, J. The species-group of Arge captiva (Insecta, Hymenoptera, Argidae). Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 35, 249–278 (2009).

    Google Scholar 

  • 20.

    Hara, H. & Shinohara, A. Arge enkianthus n. sp. (Hymenoptera, Argidae) feeding on Enkianthus campanulatus in Japan. Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 38, 21–32 (2012).

    Google Scholar 

  • 21.

    Shinohara, A., Kojima, H. & Hara, H. New host plant records and life history notes on Spinarge flavicostalis (Hymenoptera: Argidae) in Japan. Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 39, 185–191 (2013).

    Google Scholar 

  • 22.

    Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack. The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry (Oxford University Press, Oxford, 2004).

    Book 

    Google Scholar 

  • 23.

    Boevé, J.-L., Blank, S. M., Meijer, G. & Nyman, T. Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies. BMC Evol. Biol. 13, 198 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Benson, R. B. An introduction to the natural history of British sawflies. Trans. Soc. Br. Entomol. 10, 45–142 (1950).

    Google Scholar 

  • 25.

    Codella, S. G. & Raffa, K. F. Defense strategies of folivorous sawflies. In Sawfly Life History Adaptations to Woody Plants (eds Wagner, M. & Raffa, K. F.) 261–294 (Academic Press, Cambridge, 1993).

    Google Scholar 

  • 26.

    Schwerdtfeger, F. Untersuchungen über die Wirkung von Ameisen-Ansiedlungen auf die Dichte der Kleinen Fichtenblattwespe. Z. Angew. Entomol. 66, 187–206 (1970).

    Google Scholar 

  • 27.

    Woodman, R. L. & Price, P. W. Differential larval predation by ants can influence willow sawfly community structure. Ecology 73, 1028–1037 (1992).

    Article 

    Google Scholar 

  • 28.

    Boevé, J.-L. & Schaffner, U. Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134, 104–111 (2003).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 29.

    Dettner, K. Toxins, defensive compounds and drugs from insects. In Insect Molecular Biology and Ecology (ed. Hoffmann, K. H.) 39–93 (Taylor & Francis, Boca Raton, 2015).

    Google Scholar 

  • 30.

    Taeger, A., Blank, S. M. & Liston, A. D. World Catalog of Symphyta (Hymenoptera). Zootaxa 2580, 1–1064 (2010).

    Article 

    Google Scholar 

  • 31.

    Boevé, J.-L. & Rozenberg, R. Berberis sawfly contains toxic peptides not only at larval stage. Sci. Nat. 106, 14 (2019).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Schoenly, K. The predators of insects. Ecol. Entomol. 15, 333–345 (1990).

    Article 

    Google Scholar 

  • 33.

    Way, M. J. & Khoo, K. C. Role of ants in pest managment. Annu. Rev. Entomol. 37, 479–503 (1992).

    Article 

    Google Scholar 

  • 34.

    Dyer, L. A. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata. J. Insect Sci. 2, 18 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Jervis, M. & Kidd, N. Insect Natural Enemies. Practical Approaches to their Study and Evaluation (Chapman & Hall, London, 1996).

    Book 

    Google Scholar 

  • 36.

    Philpott, S. M., Greenberg, R., Bichier, P. & Perfecto, I. Impacts of major predators on tropical agroforest arthropods: Comparisons within and across taxa. Oecologia 140, 140–149 (2004).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 37.

    Rosumek, F. B. et al. Ants on plants: A meta-analysis of the role of ants as plant biotic defenses. Oecologia 160, 537–549 (2009).

    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 38.

    Fittkau, E. J. & Klinge, H. On biomass and trophic structure of the Central Amazonian rain forest ecosystem. Biotropica 5, 2–14 (1973).

    Article 

    Google Scholar 

  • 39.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Harvard, 1990).

    Book 

    Google Scholar 

  • 40.

    Ryder Wilkie, K. T., Mertl, A. L. & Traniello, J. F. A. Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS One 5, e13146 (2010).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 41.

    Wills, B. D. & Landis, D. A. The role of ants in north temperate grasslands: A review. Oecologia 186, 323–338 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 42.

    Pasteels, J. M., Grégoire, J.-C. & Rowell-Rahier, M. The chemical ecology of defense in arthropods. Annu. Rev. Entomol. 28, 263–289 (1983).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Whitman, D. W., Blum, M. R. & Alsop, D. W. Allomones: Chemicals for defense. In Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 289–351 (State University of New York Press, Albany, 1990).

    Google Scholar 

  • 44.

    Eisner, T., Eisner, M. & Siegler, M. Secret Weapons: Defenses of Insects, Spiders, Scorpions, and other Many-Legged Creatures (Harvard University Press, Harvard, 2005).

    Google Scholar 

  • 45.

    Morton, T. C. & Vencl, F. V. Larval beetles form a defense from recycled host-plant chemicals discharged as fecal wastes. J. Chem. Ecol. 24, 765–785 (1998).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Zhang, S. et al. A novel property of spider silk: Chemical defence against ants. Proc. R. Soc. B Biol. Sci. 279, 1824–1830 (2011).

    Article 
    CAS 

    Google Scholar 

  • 47.

    Hilker, M. Protective devices of early developmental stages in Pyrrhalta viburni (Coleoptera, Chrysomelidae). Oecologia 92, 71–75 (1992).

    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 48.

    Gross, J., Eben, A., Müller, I. & Wensing, A. A well protected intruder: The effective antimicrobial defense of the invasive ladybird Harmonia axyridis. J. Chem. Ecol. 36, 1180–1188 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Gentry, G. L. & Dyer, L. A. On the conditional nature of Neotropical caterpillar defenses against their natural enemies. Ecology 83, 3108–3119 (2009).

    Article 

    Google Scholar 

  • 50.

    Rojas, B. et al. How to fight multiple enemies: Target-specific chemical defences in an aposematic moth. Proc. R. Soc. B Biol. Sci. 284, 20171424 (2017).

    Article 

    Google Scholar 

  • 51.

    Boevé, J.-L. & Pasteels, J. M. Modes of defense in nematine sawfly larvae. Efficiency against ants and birds. J. Chem. Ecol. 11, 1019–1036 (1985).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    Schaffner, U., Boevé, J.-L., Gfeller, H. & Schlunegger, U. P. Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J. Chem. Ecol. 20, 3233–3250 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Boevé, J.-L. Some sawfly larvae survive predator-prey interactions with pentatomid Picromerus bidens. Sci. Nat. 108, 8 (2021).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Remmel, T., Davison, J. & Tammaru, T. Quantifying predation on folivorous insect larvae: The perspective of life-history evolution. Biol. J. Linn. Soc. 104, 1–18 (2011).

    Article 

    Google Scholar 

  • 55.

    Verhaagh, M. „Parasitierung” einer Ameisen-Pflanzen-Symbiose in neotropischen Regenwald? Carolinea 46, 150 (1988).

    Google Scholar 

  • 56.

    Boevé, J.-L. & Heilporn, S. Secretion of the ventral glands in Craesus sawfly larvae. Biochem. Syst. Ecol. 36, 836–841 (2008).

    Article 
    CAS 

    Google Scholar 

  • 57.

    Aili, S. R. et al. Diversity of peptide toxins from stinging ant venoms. Toxicon 92, 166–178 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Boevé, J.-L. & Müller, C. Defence effectiveness of easy bleeding sawfly larvae towards invertebrate and avian predators. Chemoecology 15, 51–58 (2005).

    Article 
    CAS 

    Google Scholar 

  • 59.

    Chevin, H. Notes sur les Hyménoptères Tenthredoides. 2. Identification des larves d’Arge pagana (Panz.) et d’Arge ochropa (Gmel.). Bull. Mens. la Société Linnéenne Lyon 1, 2–5 (1972).

    Article 

    Google Scholar 

  • 60.

    Schmidt, S. & Smith, D. R. Pergidae of the World – An online catalogue of the sawfly family Pergidae (Insecta, Hymenoptera, Symphyta). World Wide Web electronic publication (2018). Available at: http://pergidae.snsb-zsm.de. (Accessed: 25th July 2016)

  • 61.

    Olofsson, E. Predation by Formica polyctena Förster (Hym., Formicidae) on newly emerged larvae of Neodiprion sertifer (Geoffroy) (Hym., Diprionidae). J. Appl. Entomol. 114, 315–319 (1992).

    Article 

    Google Scholar 

  • 62.

    Hughes, L., Westoby, M. & Jurado, E. Convergence of elaiosomes and insect prey: Evidence from ant foraging behaviour and fatty acid composition. Funct. Ecol. 8, 358–365 (1994).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory

    GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset