in

Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: the effect of temperature

  • 1.

    Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J. & Urbaneja, A. biological control using invertebrates and microorganisms: Plenty of new opportunities. Biocontrol 63, 39–59 (2018).

    Article 

    Google Scholar 

  • 2.

    Koch, R. The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. J. Insect Sci. 3, 1–16 (2003).

    Article 

    Google Scholar 

  • 3.

    Huang, N.-X. et al. Long-term, large-scale releases of Trichogramma promote pesticide decrease in maize in northeastern China. Entomol. Gen. 40, 331–335 (2020).

    Article 

    Google Scholar 

  • 4.

    Gibert, J. P. Temperature directly and indirectly influences food web structure. Sci. Rep. 9, 1–8 (2019).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Wootton, J. T. & Emmerson, M. Measurement of interaction strength in nature. Annu. Rev. Ecol. Evol. Syst. 36, 419–444 (2005).

    Article 

    Google Scholar 

  • 6.

    Novak, M. & Wootton, J. T. Using experimental indices to quantify the strength of species interactions. Oikos 119, 1057–1063 (2010).

    Article 

    Google Scholar 

  • 7.

    Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).

    Article 

    Google Scholar 

  • 8.

    Fathipour, Y., Maleknia, B., Bagheri, A., Soufbaf, M. & Reddy, G. V. Functional and numerical responses, mutual interference, and resource switching of Amblyseius swirskii on two-spotted spider mite. Biol. Control 146, 104266 (2020).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Van Lenteren, J. C. et al. Pest kill rate as aggregate evaluation criterion to rank biological control agents: A case study with Neotropical predators of Tuta absoluta on tomato. Bull. Entomol. Res. 109, 812–820 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 10.

    Xia, P.-L., Yu, X.-L., Li, Z.-T. & Feng, Y. The impacts of Harmonia axyridis cues on foraging behavior of Aphidius gifuensis to Myzus persicae. J. Asia Pac. Entomol. 24, 278–284 (2021).

    Article 

    Google Scholar 

  • 11.

    Juliano, S. A. Non-linear curve fitting: Predation and functional response curve. Design and analysis of ecological experiment (eds Scheiner, S.M. & Gurevitch, J.), 178–196. (Chapman and Hall, London, 2001).

  • 12.

    Jeschke, J. M. & Tollrian, R. Effects of predator confusion on functional responses. Oikos 111, 547–555 (2005).

    Article 

    Google Scholar 

  • 13.

    Pervez, A. Functional responses of coccinellid predators: An illustration of a logistic approach. J. Insect Sci. 5, 5 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Uiterwaal, S. F. & DeLong, J. P. Multiple factors, including arena size, shape the functional responses of ladybird beetles. J. Appl. Ecol. 55, 2429–2438 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Parajulee, M., Shrestha, R., Leser, J., Wester, D. & Blanco, C. Evaluation of the functional response of selected arthropod predators on bollworm eggs in the laboratory and effect of temperature on their predation efficiency. Environ. Entomol. 35, 379–386 (2006).

    Article 

    Google Scholar 

  • 16.

    Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).

    Article 

    Google Scholar 

  • 17.

    Diamond, S. E. Contemporary climate-driven range shifts: Putting evolution back on the table. Funct. Ecol. 32, 1652–1665 (2018).

    Article 

    Google Scholar 

  • 18.

    Andrew, N. R. et al. Assessing insect responses to climate change: What are we testing for? Where should we be heading?. PeerJ 1, e11 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Jalali, M. A., Tirry, L. & De Clercq, P. Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. Biocontrol 55, 261–269 (2010).

    Article 

    Google Scholar 

  • 20.

    Moezipour, M., Kafil, M. & Allahyari, H. Functional response of Trichogramma brassicae at different temperatures and relative humidities. Bull. Insectol. 61, 245–250 (2008).

    Google Scholar 

  • 21.

    Effect of temperature. Clercq, D. Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas)(Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hübner) (Lep., Noctuidae). J. Appl. Entomol. 125, 131–134 (2001).

    Article 

    Google Scholar 

  • 22.

    Da Silva Nunes, G. et al. Temperature-dependent functional response of Euborellia annulipes (Dermaptera: Anisolabididae) preying on Plutella xylostella (Lepidoptera: Plutellidae) larvae. J. Therm. Biol. 93, 102686 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 23.

    Işikber, A. A. Functional response of two coccinellid predators, Scymnus levaillanti and Cycloneda sanguinea, to the cotton aphid, Aphis gossypii. Turk. J. Agric. For. 29, 347–355 (2005).

    Google Scholar 

  • 24.

    Walker, R., Wilder, S. M. & González, A. L. Temperature dependency of predation: Increased killing rates and prey mass consumption by predators with warming. Ecol. Evol. 10, 9696–9706 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Davidson, A. T., Hamman, E. A., McCoy, M. W. & Vonesh, J. R. Asymmetrical effects of temperature on stage-structured predator–prey interactions. Funct. Ecol. 35, 1041–1054 (2021).

    Article 

    Google Scholar 

  • 26.

    Murrell, E. G. & Barton, B. T. Warming alters prey density and biological control in conventional and organic agricultural systems. Integr. Comp. Biol. 57, 1–13 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Damien, M. & Tougeron, K. Prey–predator phenological mismatch under climate change. Curr. Opin. Insect. Sci. 35, 60–68 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Daugaard, U., Petchey, O. L. & Pennekamp, F. Warming can destabilize predator–prey interactions by shifting the functional response from Type III to Type II. J. Anim. Ecol. 88, 1575–1586 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Thomas, C. A list of the species of the tribe Aphidini, family Aphidae, found in the United States, which have been heretofore named, with descriptions of some new species. Bull. Ill. Nat. Hist. Surv. 1, 3–16 (1878).

    Article 

    Google Scholar 

  • 30.

    Elbakidze, L., Lu, L. & Eigenbrode, S. Evaluating vector-virus-yield interactions for peas and lentils under climatic variability: A limited dependent variable analysis. J. Agric. Resour. Econ. 36, 504–520 (2011).

    Google Scholar 

  • 31.

    Aznar-Fernández, T., Cimmino, A., Masi, M., Rubiales, D. & Evidente, A. Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid (Acyrthosiphon pisum) as potential biocontrol strategy. Nat. Prod. Res. 33, 2471–2479 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 32.

    Holman, J. Host Plant Catalogue of Aphids (Springer, Berlin, 2009).

    Book 

    Google Scholar 

  • 33.

    Sandhi, R. K. & Reddy, G. V. Biology, ecology, and management strategies for pea aphid (Hemiptera: Aphididae) in pulse crops. J. Integr. Pest Manag. 11, 18 (2020).

    Article 

    Google Scholar 

  • 34.

    Anuj, B. Efficacy and economics of some insecticides and a neem formulation on incidence of pea aphid (Acyrthosiphum pisum) on pea, Pisum sativum. Ann. Plant. Protect. Sci. 4, 131–133 (1996).

    Google Scholar 

  • 35.

    Slusher, E. K., Cottrell, T. & Acebes-Doria, A. L. Effects of aphicides on pecan aphids and their parasitoids in pecan orchards. Insects 12, 241 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Soleimani, S. & Madadi, H. Seasonal dynamics of: The pea aphid, Acyrthosiphon pisum (Harris), its natural enemies the seven spotted lady beetle Coccinella septempunctata Linnaeus and variegated lady beetle Hippodamia variegata Goeze, and their parasitoid Dinocampus coccinellae (Schrank). J. Plant Prot. Res. 55, 2015 (2015).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Roy, H. E. et al. The harlequin ladybird, Harmonia axyridis: Global perspectives on invasion history and ecology. Biol. Invasions 18, 997–1044 (2016).

    Article 

    Google Scholar 

  • 38.

    Roy, H., Brown, P. & Majerus, M. In: An ecological and societal approach to biological control (eds. Hokkanen H and Eilenberg J) 295–309 (Kluwer Academic Publishers), Springer, (2006).

  • 39.

    Rasheed, M. A. et al. Lethal and sublethal effects of chlorpyrifos on biological traits and feeding of the aphidophagous predator Harmonia axyridis. Insects 11, 491 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Gao, G., Liu, S., Feng, L., Wang, Y. & Lu, Z. Effect of temperature on predation by Harmonia axyridis (Pall.)(Coleoptera: Coccinellidae) on the walnut aphids Chromaphis juglandicola Kalt. and Panaphis juglandis (Goeze). Egypt. J. Biol. Pest Control 30, 1–6 (2020).

    Article 

    Google Scholar 

  • 41.

    Islam, Y. et al. Temperature-dependent functional response of Harmonia axyridis (Coleoptera: Coccinellidae) on the eggs of Spodoptera litura (Lepidoptera: Noctuidae) in laboratory. Insects 11, 583 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Ge, Y. et al. Different predation capacities and mechanisms of Harmonia axyridis (Coleoptera: Coccinellidae) on two morphotypes of pear psylla Cacopsylla chinensis (Hemiptera: Psyllidae). PLoS ONE 14, e0215834 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Ünlü, A. G., Terlau, J. F. & Bucher, R. Predation and avoidance behavior of the pea aphid Acyrthosiphon pisum confronted with native and invasive lady beetles in Europe. Biol. Invasions 2020, 1–10 (2020).

    Google Scholar 

  • 44.

    Shah, M. A. & Khan, A. Functional response-a function of predator and prey species. The Bioscan 8, 751–758 (2013).

    Google Scholar 

  • 45.

    Moradi, M., Hassanpour, M., Fathi, S. A. A. & Golizadeh, A. Foraging behaviour of Scymnus syriacus (Coleoptera: Coccinellidae) provided with Aphis spiraecola and Aphis gossypii (Hemiptera: Aphididae) as prey: Functional response and prey preference. Eur. J. Entomol. 117, 83–92 (2020).

    Article 

    Google Scholar 

  • 46.

    Sinclair, B. J., Williams, C. M. & Terblanche, J. S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 85, 594–606 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Noman, Q. M., Shah, F. M., Mahmood, K. & Razaq, M. Population dynamics of Tephritid fruit flies in citrus and mango orchards of Multan, Southern Punjab, Pakistan. https://doi.org/10.17582/journal.pjz/20191021181023 (2021).

  • 48.

    Logan, J. D., Wolesensky, W. & Joern, A. Temperature-dependent phenology and predation in arthropod systems. Ecol. modell. 196, 471–482 (2006).

    Article 

    Google Scholar 

  • 49.

    Uiterwaal, S. F. & DeLong, J. P. Functional responses are maximized at intermediate temperatures. Ecology 101, e02975 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Wale, M., Jembere, B. & Seyoum, E. Biology of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on cool-season legumes. Int. J. Trop. Insect. Sci. 20, 171–180 (2000).

    Article 

    Google Scholar 

  • 51.

    Seyfollahi, F., Esfandiari, M., Mossadegh, M. & Rasekh, A. Functional response of Hyperaspis polita (Coleoptera, Coccinellidae) to the recently invaded mealybug Phenacoccus solenopsis (Hemiptera, Pseudococcidae). Neotrop. Entomol. 48, 484–495 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Katsarou, I., Margaritopoulos, J. T., Tsitsipis, J. A., Perdikis, D. C. & Zarpas, K. D. Effect of temperature on development, growth and feeding of Coccinella septempunctata and Hippodamia convergens reared on the tobacco aphid, Myzus persicae nicotianae. Biocontrol 50, 565–588 (2005).

    Article 

    Google Scholar 

  • 53.

    Koehler, H. Predatory mites (Gamasina, Mesostigmata). Agric. Ecosyst. Environ. 74, 395–410 (1999).

    Article 

    Google Scholar 

  • 54.

    Farhadi, R., Allahyari, H. & Juliano, S. A. Functional response of larval and adult stages of Hippodamia variegata (Coleoptera: Coccinellidae) to different densities of Aphis fabae (Hemiptera: Aphididae). Environ. Entomol. 39, 1586–1592 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Aqueel, M. & Leather, S. Nitrogen fertiliser affects the functional response and prey consumption of Harmonia axyridis (Coleoptera: Coccinellidae) feeding on cereal aphids. Ann. Appl. Biol. 160, 6–15 (2012).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Koch, R. L., Hutchison, W. D., Venette, R. & Heimpel, G. E. Susceptibility of immature monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 28, 265–270 (2003).

    Article 

    Google Scholar 

  • 57.

    He, J., Ma, E., Shen, Y., Chen, W. & Sun, X. Observations of the biological characteristics of Harmonia axyridis (Pallas)(Coleoptera: Coccinellidae). J. Shanghai Agric. College 12, 119–124 (1994).

    Google Scholar 

  • 58.

    Huang, Z. et al. Predation and functional response of the multi-coloured Asian ladybeetle Harmonia axyridis on the adult Asian citrus psyllid Diaphorina citri. Biocontrol Sci. Technol. 29, 293–307 (2019).

    Article 

    Google Scholar 

  • 59.

    Lee, J.-H. & Kang, T.-J. Functional response of Harmonia axyridis (Pallas)(Coleoptera: Coccinellidae) to Aphis gossypii Glover (Homoptera: aphididae) in the laboratory. Biol. Control 31, 306–310 (2004).

    Article 

    Google Scholar 

  • 60.

    Xue, Y. et al. Predation by Coccinella septempunctata and Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Homoptera: Aphididae). Environ. Entomol. 38, 708–714 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Obrycki, J. J. & Kring, T. J. Predaceous Coccinellidae in biological control. Annu. Rev. Entomol. 43, 295–321 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Feng, Y., Zhou, Z.-X., An, M.-R., Yu, X.-L. & Liu, T.-X. The effects of prey distribution and digestion on functional response of Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 124, 74–81 (2018).

    Article 

    Google Scholar 

  • 63.

    Dai, C. et al. Can contamination by major systemic insecticides affect the voracity of the harlequin ladybird?. Chemosphere 256, 126986 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Qin, D. et al. Treating green pea aphids, Myzus persicae, with azadirachtin affects the predatory ability and protective enzyme activity of harlequin ladybirds. Harmonia axyridis. Ecotoxicol. Environ. Saf. 212, 111984 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Shah, F. M., Razaq, M., Ali, A., Han, P. & Chen, J. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan. PLoS ONE 12, e0184639 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Shah, F. M. et al. Action threshold development in cabbage pest management using synthetic and botanical insecticides. Entomol. Gen. 40, 157–172 (2020).

    Article 

    Google Scholar 

  • 67.

    Shah, F. M. et al. Field evaluation of synthetic and neem-derived alternative insecticides in developing action thresholds against cauliflower pests. Sci. Rep. 9, 7684 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Naeem, A. et al. Laboratory induced selection of pyriproxyfen resistance in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae): Cross-resistance potential, realized heritability, and fitness costs determination using age-stage, two-sex life table. Chemosphere 269, 129367. https://doi.org/10.1016/j.chemosphere.122020.129367 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Rix, R. & Cutler, G. Low Doses of a Neonicotinoid stimulate reproduction in a beneficial predatory insect. J. Econ. Entomol. 113, 2179–2186 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Atlıhan, R. & Güldal, H. Prey density-dependent feeding activity and life history of Scymnus subvillosus. Phytoparasitica 37, 35–41 (2009).

    Article 

    Google Scholar 

  • 71.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • 72.

    Vucic-Pestic, O., Ehnes, R. B., Rall, B. C. & Brose, U. Warming up the system: Higher predator feeding rates but lower energetic efficiencies. Glob. Change Biol. 17, 1301–1310 (2011).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Lang, B., Rall, B. C. & Brose, U. Warming effects on consumption and intraspecific interference competition depend on predator metabolism. J. Anim. Ecol. 81, 516–523 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Wu, P., Zhang, J., Haseeb, M., Yan, S. & Kanga, L. Functional responses and intraspecific competition in the ladybird Harmonia axyridis (Coleoptera: Coccinellidae) provided with Melanaphis sacchari (Homoptera: Aphididae) as prey. Eur. J. Entomol. 115, 232–241 (2018).

    Article 

    Google Scholar 

  • 75.

    Hodek, I., van Emden, H. F. & Honěk, A. Diapause/dormancy. Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley Blackwell, Chichester, (2012).

  • 76.

    Li, Y. et al. The effect of different dietary sugars on the development and fecundity of Harmonia axyridis. Front. Physiol. 11, 574851 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Sharma, P., Verma, S., Chandel, R., Shah, M. & Gavkare, O. Functional response of Harmonia dimidiata (fab.) to melon aphid, Aphis gossypii Glover under laboratory conditions. Phytoparasitica 45, 373–379 (2017).

    Article 

    Google Scholar 

  • 78.

    Feng, Y. et al. Conspecific and heterospecific interactions modify the functional response of Harmonia axyridis and Propylea japonica to Aphis citricola. Entomol. Exp. Appl. 166, 873–882 (2018).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Hassanzadeh-Avval, M., Sadeghi-Namaghi, H. & Fekrat, L. Factors influencing functional response, handling time and searching efficiency of Anthocoris minki Dohrn (Hem.: Anthocoridae) as predator of Psyllopsis repens Loginova (Hem.: Psyllidae). Phytoparasitica 47, 341–350 (2019).

    Article 

    Google Scholar 

  • 80.

    Banihashemi, A. S., Seraj, A. A., Yarahmadi, F. & Rajabpour, A. Effect of host plants on predation, prey preference and switching behaviour of Orius albidipennis on Bemisia tabaci and Tetranychus turkestani. Int. J. Trop. Insect Sci. 37, 176–182 (2017).

    Article 

    Google Scholar 

  • 81.

    Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).

    CAS 
    Article 

    Google Scholar 

  • 82.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2014).

  • 83.

    Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369–383 (1972).

    Article 

    Google Scholar 

  • 84.

    Pritchard, D. W., Paterson, R., Bovy, H. C. & Barrios-O’Neill, D. Frair: An R package for fitting and comparing consumer functional responses. Methods Ecol. Evol. 8, 1528–1534 (2017).

    Article 

    Google Scholar 

  • 85.

    Hassell, M. The spatial and temporal dynamics of host-parasitoid interactions (Oxford University Press, 2000).

    Google Scholar 


  • Source: Ecology - nature.com

    Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory

    GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset