in

Water quality drives the regional patterns of an algal metacommunity in interconnected lakes

  • 1.

    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x (2004).

    Article 

    Google Scholar 

  • 2.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Kraft, N. et al. Community assembly, coexistence, and the environmental filtering metaphor. Funct. Ecol. https://doi.org/10.1111/1365-2435.12345 (2014).

    Article 

    Google Scholar 

  • 4.

    de la Sancha, N. U., Higgins, C. L., Presley, S. J. & Strauss, R. E. Metacommunity structure in a highly fragmented forest: has deforestation in the Atlantic Forest altered historic biogeographic patterns?. Divers. Distrib. 20, 1058–1070. https://doi.org/10.1111/ddi.12210 (2014).

    Article 

    Google Scholar 

  • 5.

    Leibold, M. & Mikkelson, G. Coherence, species turnover, and boundary clumping: Elements of meta-community structure. Oikos 97, 237–250. https://doi.org/10.1034/j.1600-0706.2002.970210.x (2002).

    Article 

    Google Scholar 

  • 6.

    Presley, S., Higgins, C. & Willig, M. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119, 908–917. https://doi.org/10.1111/j.1600-0706.2010.18544.x (2010).

    Article 

    Google Scholar 

  • 7.

    Dallas, T. & Drake, J. M. Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere 5, 1–13. https://doi.org/10.1890/ES14-00071.1 (2014).

    Article 

    Google Scholar 

  • 8.

    Heino, J., Mykrä, H. & Muotka, T. Temporal variability of nestedness and idiosyncratic species in stream insect assemblages. Divers. Distrib. 15, 198–206. https://doi.org/10.1111/j.1472-4642.2008.00513.x (2009).

    Article 

    Google Scholar 

  • 9.

    Henriques-Silva, R., Lindo, Z. & Peres-Neto, P. R. A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94, 627–639. https://doi.org/10.1890/12-0683.1 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 10.

    Dallas, T. & Drake, J. M. Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere 5, art104. https://doi.org/10.1890/ES14-00071.1 (2014).

    Article 

    Google Scholar 

  • 11.

    Erős, T. et al. Quantifying temporal variability in the metacommunity structure of stream fishes: The influence of non-native species and environmental drivers. Hydrobiologia 722, 31–43. https://doi.org/10.1007/s10750-013-1673-8 (2014).

    Article 

    Google Scholar 

  • 12.

    Fernandes, I. M., Henriques-Silva, R., Penha, J., Zuanon, J. & Peres-Neto, P. R. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: The case of floodplain-fish communities. Ecography 37, 464–475. https://doi.org/10.1111/j.1600-0587.2013.00527.x (2014).

    Article 

    Google Scholar 

  • 13.

    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw. Biol. 63, 141–163. https://doi.org/10.1111/fwb.13037 (2018).

    Article 

    Google Scholar 

  • 14.

    Kim, S., Chung, S., Park, H., Cho, Y. & Lee, H. Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water https://doi.org/10.3390/w11061163 (2019).

    Article 

    Google Scholar 

  • 15.

    Deng, J. et al. Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China. PLoS ONE 9, e113960–e113960. https://doi.org/10.1371/journal.pone.0113960 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Yang, J., Jiang, H., Liu, W. & Wang, B. Benthic algal community structures and their response to geographic distance and environmental variables in the Qinghai-Tibetan lakes with different salinity. Front. Microbiol. 9, 578–578. https://doi.org/10.3389/fmicb.2018.00578 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. 9, 1201. https://doi.org/10.3389/fmicb.2018.01201 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    RDevelopmentCoreTeam. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

    Google Scholar 

  • 19.

    Baird, R. B. Standard Methods for the Examination of Water and Wastewater 23rd edn. (Water Environment Federation, American Public Health Association, 2017).

    Google Scholar 

  • 20.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 21.

    Cajo, J. F. T. B. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179. https://doi.org/10.2307/1938672 (1986).

    Article 

    Google Scholar 

  • 22.

    Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33, 23–45. https://doi.org/10.1111/j.1600-0587.2009.06148.x (2010).

    Article 

    Google Scholar 

  • 23.

    Clements, F. E. Nature and structure of the climax. J. Ecol. 24, 252–284. https://doi.org/10.2307/2256278 (1936).

    Article 

    Google Scholar 

  • 24.

    Kurthen, A. L. et al. Metacommunity structures of macroinvertebrates and diatoms in high mountain streams, Yunnan, China. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.571887 (2020).

    Article 

    Google Scholar 

  • 25.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137. https://doi.org/10.1139/f80-017 (1980).

    Article 

    Google Scholar 

  • 26.

    López-González, C., Presley, S. J., Lozano, A., Stevens, R. D. & Higgins, C. L. Metacommunity analysis of Mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. J. Biogeogr. 39, 177–192. https://doi.org/10.1111/j.1365-2699.2011.02590.x (2012).

    Article 

    Google Scholar 

  • 27.

    Heino, J., Soininen, J., Alahuhta, J., Lappalainen, J. & Virtanen, R. Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms. Oecologia 183, 121–137. https://doi.org/10.1007/s00442-016-3750-y (2017).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Heino, J. & Alahuhta, J. Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J. Anim. Ecol. 84, 427–441. https://doi.org/10.1111/1365-2656.12287 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Mallin, M. A., McIver, M. R., Ensign, S. H. & Cahoon, L. B. Photosynthetic and heterotrophic impacts of nutrient loading to blackwater streams. Ecol. Appl. 14, 823–838. https://doi.org/10.1890/02-5217 (2004).

    Article 

    Google Scholar 

  • 30.

    B-Béres, V. et al. Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams. Adv. Water Resour. 126, 129–136. https://doi.org/10.1016/j.advwatres.2019.02.010 (2019).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Kagalou, I., Petridis, D. & Tsimarakis, G. Seasonal variation of water quality parameters and plankton in a shallow Greek lake. J. Freshw. Ecol. 18, 199–206. https://doi.org/10.1080/02705060.2003.9664485 (2003).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621, 1–19. https://doi.org/10.1007/s10750-008-9645-0 (2009).

    Article 

    Google Scholar 

  • 33.

    Schabhüttl, S. et al. Temperature and species richness effects in phytoplankton communities. Oecologia 171, 527–536. https://doi.org/10.1007/s00442-012-2419-4 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Chen, S. et al. Geographical patterns of algal communities associated with different urban lakes in China. Int. J. Environ. Res. Public Health 17, 1009. https://doi.org/10.3390/ijerph17031009 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Hwang, S.-J., Kim, H.-S., Shin, J.-K., Oh, J.-M. & Kong, D.-S. Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515, 161–179. https://doi.org/10.1023/B:HYDR.0000027327.06471.1e (2004).

    Article 

    Google Scholar 

  • 36.

    Moss, B. et al. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J. Appl. Ecol. 40, 782–792. https://doi.org/10.1046/j.1365-2664.2003.00839.x (2003).

    Article 

    Google Scholar 

  • 37.

    Chen, S. et al. Local habitat heterogeneity determines the differences in benthic diatom metacommunities between different urban river types. Sci. Total Environ. 669, 711–720. https://doi.org/10.1016/j.scitotenv.2019.03.030 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory

    GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset